...
首页> 外文期刊>PLoS Computational Biology >A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells
【24h】

A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells

机译:用于建模和理解小鼠胚胎干细胞的非平衡基因调控网络的概念和计算框架

获取原文

摘要

The capacity of pluripotent embryonic stem cells to differentiate into any cell type in the body makes them invaluable in the field of regenerative medicine. However, because of the complexity of both the core pluripotency network and the process of cell fate computation it is not yet possible to control the fate of stem cells. We present a theoretical model of stem cell fate computation that is based on Halley and Winkler’s Branching Process Theory (BPT) and on Greaves et al.’s agent-based computer simulation derived from that theoretical model. BPT abstracts the complex production and action of a Transcription Factor (TF) into a single critical branching process that may dissipate, maintain, or become supercritical. Here we take the single TF model and extend it to multiple interacting TFs, and build an agent-based simulation of multiple TFs to investigate the dynamics of such coupled systems. We have developed the simulation and the theoretical model together, in an iterative manner, with the aim of obtaining a deeper understanding of stem cell fate computation, in order to influence experimental efforts, which may in turn influence the outcome of cellular differentiation. The model used is an example of self-organization and could be more widely applicable to the modelling of other complex systems. The simulation based on this model, though currently limited in scope in terms of the biology it represents, supports the utility of the Halley and Winkler branching process model in describing the behaviour of stem cell gene regulatory networks. Our simulation demonstrates three key features: (i) the existence of a critical value of the branching process parameter, dependent on the details of the cistrome in question; (ii) the ability of an active cistrome to “ignite” an otherwise fully dissipated cistrome, and drive it to criticality; (iii) how coupling cistromes together can reduce their critical branching parameter values needed to drive them to criticality.
机译:多能胚胎干细胞分化为身体中任何细胞类型的能力使它们在再生医学领域中非常宝贵。然而,由于核心多能网多能网和细胞命运计算的复杂性,并且尚不可以控制干细胞的命运。我们介绍了基于哈利和Winkler的分支过程理论(BPT)和Greaves等人的理论模型。基于代理的计算机模拟来自该理论模型。 BPT将转录因子(TF)的复杂生产和作用摘要进入单一的关键分支过程,可以消散,维持或变得超临界。在这里,我们采用单个TF模型并将其扩展到多个交互TFS,并构建基于代理的多个TF的模拟,以研究这种耦合系统的动态。我们以迭代方式开发了仿真和理论模型,目的是获得对干细胞命运计算的更深入了解,以影响实验努力,这可能反过来影响细胞分化的结果。使用的模型是自组织的一个例子,并且可以更广泛适用于其他复杂系统的建模。基于该模型的仿真,但目前在其所代表的生物学方面限制了范围,支持哈利和Winkler分支过程模型在描述干细胞基因监管网络的行为时的效用。我们的模拟演示了三个关键特征:(i)存在分支过程参数的临界值,取决于有问题的车辆的细节; (ii)活性传球物“点燃”另一个完全消散的车辆的能力,并将其驱动至危重程度; (iii)如何将轮廓孔组合在一起可以减少驱动它们以临界所需的关键分支参数值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号