首页> 美国卫生研究院文献>PLoS Computational Biology >Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
【2h】

Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

机译:生物粒子机械变形的波动非线性弹簧模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.
机译:病毒衣壳的机械性质与衣壳结构中的局部构象动力学相关。它们还反映了承受基因组加载时产生的高内部压力所需的稳定性,并有助于病毒感染力中重要事件的成功,例如衣壳成熟,基因组脱壳和受体结合。生物纳米颗粒的机械性能通常是通过在原子力显微镜纳米压痕实验中监测其动态变形来确定的;但是以前没有描述描述观察到的变形行为的全部范围的综合理论。我们提出了一种用于建模生物纳米粒子动态变形的新理论,该理论考虑了由压头-粒子物理接触和建模粒子结构的弯曲元素(梁)的弯曲引起的非线性赫兹变形。光束超过临界点的变形会触发粒子向塌陷状态的动态过渡。在实验或模拟力(F)-变形(X)光谱中观察到,这种极端事件伴随着灾难性的力下降。该理论根据赫兹和弯曲变形的杨氏模量解释了包括FX曲线的非线性成分在内的光谱的精细特征,并根据最大强度和协同作用来解释结构损伤相关梁的生存概率。参数。通过将理论曲线与几种病毒颗粒的实验力-变形谱进行比较,成功地描述了天然纳米颗粒的变形动力学,从而说明了该理论。该方法全面描述了生物和人工纳米颗粒中的动态结构转变,这对于它们在纳米技术和纳米医学应用中的最佳使用至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号