首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
【2h】

Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model

机译:随机半力学模型实时预测传染病动态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Real-time forecasts of infectious diseases can help public health planning, especially during outbreaks. If forecasts are generated from mechanistic models, they can be further used to target resources or to compare the impact of possible interventions. However, paremeterising such models is often difficult in real time, when information on behavioural changes, interventions and routes of transmission are not readily available. Here, we present a semi-mechanistic model of infectious disease dynamics that was used in real time during the 2013–2016 West African Ebola epidemic, and show fits to a Ebola Forecasting Challenge conducted in late 2015 with simulated data mimicking the true epidemic. We assess the performance of the model in different situations and identify strengths and shortcomings of our approach. Models such as the one presented here which combine the power of mechanistic models with the flexibility to include uncertainty about the precise outbreak dynamics may be an important tool in combating future outbreaks.
机译:传染病的实时预测可以帮助公共卫生计划,尤其是在暴发期间。如果预测是通过机械模型生成的,则可以将其进一步用作目标资源或比较可能干预的影响。然而,当关于行为变化,干预措施和传播途径的信息不易获得时,实时地对这种模型进行参数化通常是困难的。在这里,我们介绍了传染病动态的半机械模型,该模型在2013-2016年西非埃博拉疫情中实时使用,并显示出与2015年底进行的埃博拉疫情预测挑战相吻合,模拟数据模拟了真实的流行病。我们评估模型在不同情况下的性能,并确定我们方法的优点和缺点。此处介绍的模型将机械模型的功能与灵活性结合起来,可以包含有关精确爆发动态的不确定性,这些模型可能是应对未来爆发的重要工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号