首页> 美国卫生研究院文献>Elsevier Sponsored Documents >The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors
【2h】

The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors

机译:感染性人类多瘤病毒的结构及其与细胞受体的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionBK polyomavirus (BKV) is an opportunistic pathogen that causes severe diseases in the immunosuppressed (). Initial infection may occur through a respiratory or oral route, and is either asymptomatic or causes a mild respiratory illness (). A persistent infection is then established in the kidney and urinary tract, and 80%–90% of the general population are thought to be seropositive for the most prevalent BKV genotypes (, , , ). In patients undergoing immunosuppression following kidney or bone marrow transplantation, lytic replication can occur, causing polyomavirus-associated nephropathy (PVAN) and hemorrhagic cystitis (, , ). Up to 10% of kidney transplant patients experience PVAN, with as many as 90% of these eventually losing their graft (). The prevalence of BKV-associated disease is rising as the number of transplants increases (), and there is also mounting evidence that BKV, similar to Merkel cell polyomavirus, may be carcinogenic in humans (, , , , href="#bib13" rid="bib13" class=" bibr popnode">Frascà et al., 2015, href="#bib61" rid="bib61" class=" bibr popnode">Tillou and Doerfler, 2014, href="#bib12" rid="bib12" class=" bibr popnode">Feng et al., 2008). No effective antivirals specifically targeting BKV are available (href="#bib5" rid="bib5" class=" bibr popnode">Bennett et al., 2012, href="#bib2" rid="bib2" class=" bibr popnode">Ambalathingal et al., 2017), and so there is increasing interest in the development of targeted therapeutics. High-resolution structural information for the infectious BKV virion and its interaction with cellular receptors would be a useful resource in designing and evaluating such therapies.Our current understanding of polyomavirus structure comes largely from pioneering work by Caspar (href="#bib17" rid="bib17" class=" bibr popnode">Griffith et al., 1992, href="#bib52" rid="bib52" class=" bibr popnode">Rayment et al., 1982) and Harrison (href="#bib57" rid="bib57" class=" bibr popnode">Stehle et al., 1996, href="#bib59" rid="bib59" class=" bibr popnode">Stehle and Harrison, 1996, href="#bib33" rid="bib33" class=" bibr popnode">Liddington et al., 1991) on SV40 (which infects Rhesus monkeys), and murine polyomavirus (PyV). Crystal structures revealed that polyomavirus capsids consist of 360 copies of the major capsid protein VP1, which form 72 “pentons,” each consisting of a ring of five β barrel-containing VP1 monomers (href="#bib45" rid="bib45" class=" bibr popnode">Nilsson et al., 2005). Together, these form a T = 7d lattice, with a C-terminal arm from each VP1 making interactions with neighboring pentons to stabilize the capsid shell. Essentially, polyomaviruses position pentameric capsomers in what would be the pentavalent and hexavalent positions of a true quasi-equivalent lattice (href="#bib19" rid="bib19" class=" bibr popnode">Harrison, 2017, href="#bib7" rid="bib7" class=" bibr popnode">Caspar and Klug, 1962). The asymmetric unit of these capsids therefore comprises six quasi-equivalent VP1 chains, five of which form the pentons in a hexavalent position, with the remaining VP1 chain from five asymmetric units occupying a pentavalent position. A single copy of the minor capsid protein VP2, or its N-terminal truncated variant VP3, is incorporated within each penton (href="#bib9" rid="bib9" class=" bibr popnode">Chen et al., 1998, href="#bib22" rid="bib22" class=" bibr popnode">Hurdiss et al., 2016).Subsequently, there has been a shift toward using isolated VP1 pentons for both structural and functional studies. Binding experiments using such pentons, which cannot assemble into virus-like particles (VLPs), indicated that binding of free pentons to cells requires the presence of sialylated glycans on the host cell membrane (href="#bib37" rid="bib37" class=" bibr popnode">Maginnis et al., 2013, href="#bib40" rid="bib40" class=" bibr popnode">Neu et al., 2013a). Crystallographic structures of putative receptor ligands soaked into penton crystals have revealed the molecular mechanisms of receptor recognition (href="#bib43" rid="bib43" class=" bibr popnode">Neu et al., 2010, href="#bib41" rid="bib41" class=" bibr popnode">Neu et al., 2012, href="#bib40" rid="bib40" class=" bibr popnode">Neu et al., 2013a, href="#bib42" rid="bib42" class=" bibr popnode">Neu et al., 2013b, href="#bib58" rid="bib58" class=" bibr popnode">Stehle and Harrison, 1997). However, the major BKV receptors GD1b and GT1b (href="#bib35" rid="bib35" class=" bibr popnode">Low et al., 2006) cannot be soaked into crystals, presumably as a result of steric restrictions (href="#bib40" rid="bib40" class=" bibr popnode">Neu et al., 2013a). Furthermore, crystallization of isolated pentons requires the removal of the N and C termini of VP1. Therefore, such structures do not allow us to understand how receptors are engaged by the native virion, and penton structures may not capture the full range of surface features which could be targeted by therapeutics. Indeed, recent reports suggest BKV VLPs, but not pentons, can use glycosaminoglycans (GAGs) to attach to target cells (href="#bib15" rid="bib15" class=" bibr popnode">Geoghegan et al., 2017), suggesting that GAGs bind in regions where different capsomers interact, which are missing from capsomer structures. Cryoelectron microscopy (cryo-EM) is potentially well suited to determining the structures of intact virion:receptor complexes, but no EM structure to date has sufficient resolution to elucidate the interactions stabilizing the polyomavirus capsid, or to identify bound ligands (current structures range from 8 to 25 Å [href="#bib22" rid="bib22" class=" bibr popnode">Hurdiss et al., 2016, href="#bib32" rid="bib32" class=" bibr popnode">Li et al., 2015, href="#bib45" rid="bib45" class=" bibr popnode">Nilsson et al., 2005, href="#bib56" rid="bib56" class=" bibr popnode">Shen et al., 2011, href="#bib17" rid="bib17" class=" bibr popnode">Griffith et al., 1992]).Here, we use high-resolution cryo-EM to determine the structure of BKV at 3.8 Å resolution. This resolution allows us to highlight differences between this human pathogen and those that infect simian and murine hosts, which include differences in how both the C-terminal arms and disulfide bonding stabilize the capsid. The importance of disulfide bonds is confirmed by a lower-resolution structure of BKV in reducing conditions in which the density we ascribe to disulfide bonds disappears. We also use a simple method analogous to crystallographic soaking, to determine the structures of BKV bound to receptors: the oligosaccharide moiety of ganglioside GT1b (at 3.4 Å resolution) and the model GAG heparin (at 3.6 Å resolution). Neither receptor causes a conformational change in the capsid, presumably functioning cooperatively to increase the avidity of attachment to the host cell surface.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 BK多瘤病毒(BKV)是一种机会病原体,会在免疫抑制中引起严重疾病() 。初始感染可能通过呼吸道或口服途径发生,无症状或引起轻度呼吸道疾病()。然后在肾脏和泌尿道中建立了持续性感染,据认为,最普遍的BKV基因型(,,)的总人口中有80%–90%呈血清阳性。在肾脏或骨髓移植后进行免疫抑制的患者中,会发生裂解性复制,从而导致多瘤病毒相关性肾病(PVAN)和出血性膀胱炎(``,”)。多达10%的肾脏移植患者会经历PVAN,其中多达90%的患者最终会失去其移植物()。随着移植数量的增加,与BKV相关的疾病的患病率也在上升(),而且越来越多的证据表明,与默克尔细胞多瘤病毒相似,BKV对人类可能具有致癌性(,,,,,href =“#bib13 “ rid =” bib13“ class =” bibr popnode“>弗拉斯卡等人,2015 ,href="#bib61" rid="bib61" class=" bibr popnode">蒂罗和杜夫勒,2014年< / a>,href="#bib12" rid="bib12" class=" bibr popnode">冯等人,2008 )。没有有效的针对BKV的有效抗病毒药(href="#bib5" rid="bib5" class=" bibr popnode"> Bennett等人,2012 ,href =“#bib2” rid = “ bib2” class =“ bibr popnode”> Ambalathingal等人,2017 ),因此对靶向疗法的开发越来越感兴趣。传染性BKV病毒体的高分辨率结构信息及其与细胞受体的相互作用将是设计和评估此类疗法的有用资源。我们目前对多瘤病毒结构的了解主要来自Caspar(href =“#bib17” rid =“ bib17” class =“ bibr popnode”>格里菲斯等,1992 ,href="#bib52" rid="bib52" class=" bibr popnode"> Rayment等,1982 < / a>)和哈里森(href="#bib57" rid="bib57" class=" bibr popnode"> Stehle et al。,1996 ,href =“#bib59” rid =“ bib59 “ class =” bibr popnode“> Stehle and Harrison,1996 ,href="#bib33" rid="bib33" class=" bibr popnode"> Liddington et al。,1991 ) SV40(感染恒河猴)和鼠多瘤病毒(PyV)。晶体结构显示多瘤病毒衣壳由主要衣壳蛋白VP1的360个拷贝组成,形成72个“戊烯”,每个由五个含β桶的VP1单体的环组成(href =“#bib45” rid =“ bib45 “ class =” bibr popnode“>尼尔森等人,2005 )。它们一起形成一个T = 7d晶格,每个VP1的C末端臂与相邻的戊烯相互作用以稳定衣壳。从本质上讲,多瘤病毒将五聚体衣壳定位在真正的准等价晶格的五价和六价位置(href="#bib19" rid="bib19" class=" bibr popnode">哈里森,2017年 ,href="#bib7" rid="bib7" class=" bibr popnode">卡斯珀和克鲁格,1962年)。因此,这些衣壳的不对称单元包含6条准当量的VP1链,其中5条在六价位形成五烯键,其余5个不对称单元的VP1链则占据五价位。将小衣壳蛋白VP2的单个副本或其N端截短的变体VP3合并到每个戊烯中(href="#bib9" rid="bib9" class=" bibr popnode"> Chen等, 1998 ,href="#bib22" rid="bib22" class=" bibr popnode"> Hurdiss等人,2016 )。随后,人们开始转向使用隔离式VP1五角星用于结构和功能研究。使用无法组装成病毒样颗粒(VLP)的戊烯的结合实验表明,游离戊烯与细胞的结合需要宿主细胞膜上存在唾液酸化聚糖(href =“#bib37” rid =“ bib37 “ class =” bibr popnode“> Maginnis等,2013 ,href="#bib40" rid="bib40" class=" bibr popnode"> Neu等,2013a ) 。浸入五通子晶体的推定受体配体的晶体学结构揭示了受体识别的分子机制(<​​a href="#bib43" rid="bib43" class=" bibr popnode"> Neu等,2010 , href="#bib41" rid="bib41" class=" bibr popnode"> Neu等人,2012 ,href =“#bib40” rid =“ bib40” class =“ bibr popnode” > Neu et al。,2013a ,href="#bib42" rid="bib42" class=" bibr popnode"> Neu et al。,2013b ,href =“#bib58 “ rid =“ bib58” class =“ bibr popnode”> Stehle和Harrison,1997 )。然而,主要的BKV受体GD1b和GT1b(href="#bib35" rid="bib35" class=" bibr popnode"> Low等,2006 )不能被浸入晶体,大概是由于空间限制(href="#bib40" rid="bib40" class=" bibr popnode"> Neu等人,2013a )。此外,孤立的戊烯的结晶需要去除VP1的N和C末端。因此,这样的结构不允许我们理解天然病毒体是如何与受体结合的,并且戊烯结构可能无法捕获治疗剂可能靶向的全部表面特征。确实,最近的报道表明BKV VLP而不是Penton可以使用糖胺聚糖(GAG)附着到靶细胞上(href="#bib15" rid="bib15" class=" bibr popnode"> Geoghegan et al。,2017 ),表明GAG结合在不同的衣壳异构体相互作用的区域中,而这是衣壳异构体结构所缺少的。低温电子显微镜(cryo-EM)可能非常适合确定完整的病毒体:受体复合物的结构,但是迄今为止,没有EM结构具有足够的分辨率来阐明稳定多瘤病毒衣壳的相互作用或鉴定结合的配体(当前结构8到25Å[href="#bib22" rid="bib22" class=" bibr popnode"> Hurdiss et al。,2016 ,href =“#bib32” rid =“ bib32”类=“ bibr popnode”> Li等,2015 ,href="#bib45" rid="bib45" class=" bibr popnode">尼尔森等,2005 ,href =“#bib56” rid =“ bib56” class =“ bibr popnode”> Shen等人,2011 ,href="#bib17" rid="bib17" class=" bibr popnode">格里菲斯et al。,1992 ])。在这里,我们使用高分辨率的cryo-EM来确定3.8Å分辨率的BKV的结构。该解决方案使我们能够突出此人类病原体与感染猿猴和鼠宿主的病原体之间的差异,其中包括C末端臂和二硫键如何稳定衣壳的差异。在还原条件下,BKV的较低分辨率结构证实了二硫键的重要性,在这种条件下,我们归因于二硫键的密度消失了。我们还使用类似于结晶浸泡的简单方法来确定与受体结合的BKV的结构:神经节苷脂GT1b的寡糖部分(分辨率为3.4Å)和模型GAG肝素(分辨率为3.6Å)。两种受体均未引起衣壳的构象变化,可能协同作用以增加与宿主细胞表面的附着亲和力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号