首页> 美国卫生研究院文献>ACS Omega >Interfacial Charge Transfer and Effective Terminationof Electron Recombination Process in (ZnO)(1–x)/2(Bi2O3)x(Dy2O3)(1–x)/2 Heterostructured Nanocomposite Material under Visible Light Irradiation
【2h】

Interfacial Charge Transfer and Effective Terminationof Electron Recombination Process in (ZnO)(1–x)/2(Bi2O3)x(Dy2O3)(1–x)/2 Heterostructured Nanocomposite Material under Visible Light Irradiation

机译:界面电荷转移和有效终止可见光辐射下(ZnO)(1-x)/ 2(Bi2O3)x(Dy2O3)(1-x)/ 2异质结构纳米复合材料的电子复合过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have synthesized a novel heterostructured composite material-(ZnO)(1–x)/2(Bi2O3)x(Dy2O3)(1–x)/2 wherein electron–hole recombination has been successfully inhibited by an interfacial charge-transfer mechanism across a semiconductor interface. As a result of this, the material possessed enhanced photoresponse under visible light irradiations. X-ray diffraction analysis shows the material to be highly nanocrystalline in nature. The band gap energy as calculated from the UV–vis–diffused reflectance spectroscopy spectrum was found to be 2.68 eV. Morphological studies by high-resolution scanning electron microscopy and high-resolution transmission electron microscopy analyses show the presence of distinct microrod-shaped αBi2O3 and spherical ball-like clusters of ZnO and Dy2O3 nanoparticles. X-ray photoelectron spectroscopy and energy-dispersive X-ray analyses confirm the presence of Bi, Zn, Dy, and O in the material. Atomic force microscopy (AFM) analysis revealed the high surface roughness and porosity of the prepared composite. Electron paramagnetic resonance analysis confirmed the in situ generation of  OHradicals undervisible light irradiation. The photocatalytic efficiency of the (ZnO)(1–x)/2(Bi2O3)x(Dy2O3)(1–x)/2 composite material was evaluated by the photooxidationof Orange G (OG) dye molecules under visible light irradiation. Thecatalyst retained its original efficiency even after the 3rd cycleof its reuse thereby validating the economic feasibility of the system.By-product analysis by ESI-MS+ analysis proved the completedegradation of the OG molecules from the aqueous solution.
机译:我们合成了一种新型的异质结构复合材料-(ZnO)(1-x)/ 2(Bi2O3)x(Dy2O3)(1-x)/ 2,其中电子-空穴复合已成功地通过界面电荷转移机制抑制了半导体接口。结果,该材料在可见光照射下具有增强的光响应。 X射线衍射分析表明该材料本质上是高度纳米晶体。由紫外可见漫反射光谱计算得出的带隙能量为2.68 eV。通过高分辨率扫描电子显微镜和高分辨率透射电子显微镜分析进行的形态学研究表明,ZnO和Dy2O3纳米粒子具有明显的微棒形αBi2O3和球形球形簇。 X射线光电子能谱和能量色散X射线分析证实了材料中Bi,Zn,Dy和O的存在。原子力显微镜(AFM)分析显示,所制备复合材料具有较高的表面粗糙度和孔隙率。电子顺磁共振分析证实了OH 自由基的原位生成可见光照射。 (ZnO)(1-x)/ 2(Bi2O3)x(Dy2O 3 (1-x)/ 2 复合材料的光催化效率通过光氧化可见光照射下橙G(OG)染料分子的合成。的催化剂即使在第三个循环后仍保持其原始效率它的重复使用,从而验证了系统的经济可行性。通过ESI-MS + 分析进行的副产物分析证明了水溶液中OG分子的降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号