首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Robust Lane Detection Model Using Vertical Spatial Features and Contextual Driving Information
【2h】

A Robust Lane Detection Model Using Vertical Spatial Features and Contextual Driving Information

机译:一种强大的车道检测模型使用垂直空间特征和上下文驾驶信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quality of detected lane lines has a great influence on the driving decisions of unmanned vehicles. However, during the process of unmanned vehicle driving, the changes in the driving scene cause much trouble for lane detection algorithms. The unclear and occluded lane lines cannot be clearly detected by most existing lane detection models in many complex driving scenes, such as crowded scene, poor light condition, etc. In view of this, we propose a robust lane detection model using vertical spatial features and contextual driving information in complex driving scenes. The more effective use of contextual information and vertical spatial features enables the proposed model more robust detect unclear and occluded lane lines by two designed blocks: feature merging block and information exchange block. The feature merging block can provide increased contextual information to pass to the subsequent network, which enables the network to learn more feature details to help detect unclear lane lines. The information exchange block is a novel block that combines the advantages of spatial convolution and dilated convolution to enhance the process of information transfer between pixels. The addition of spatial information allows the network to better detect occluded lane lines. Experimental results show that our proposed model can detect lane lines more robustly and precisely than state-of-the-art models in a variety of complex driving scenarios.
机译:检测到的车道线的质量对无人驾驶车辆的驾驶决策产生了很大影响。然而,在无人驾驶车辆驾驶过程中,驱动场景的变化对车道检测算法造成了很大的麻烦。在许多复杂的驾驶场景中的大多数现有车道检测模型中,不能清楚地检测不清楚和遮挡的车道线,例如拥挤的场景,光线状况不佳等。鉴于此,我们使用垂直空间特征提出了一种强大的车道检测模型复杂驾驶场景中的上下文驾驶信息。越有效地使用上下文信息和垂直空间功能使得所提出的模型可以通过两个设计的块更加强大地检测不明确和遮挡的车道线路:特征合并块和信息交换块。特征合并块可以提供增加的上下文信息来传递给后续网络,这使得网络能够了解更多特征细节以帮助检测尚不清楚的车道线。信息交换块是一种新颖的块,其结合了空间卷积和扩张卷积的优点,以增强像素之间的信息传递过程。添加空间信息允许网络更好地检测遮挡车道线。实验结果表明,我们所提出的模型可以在各种复杂的驾驶场景中更加强大,精确地检测车道线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号