首页> 外文OA文献 >Robust Bayesian Detection and Tracking of Lane Boundary Markings for Autonomous Driving
【2h】

Robust Bayesian Detection and Tracking of Lane Boundary Markings for Autonomous Driving

机译:用于自动驾驶的鲁棒贝叶斯检测和车道边界标记跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lane detection is a fundamental and challenging task in autonomous driving and mustbe performed safely and robustly to avoid catastrophic failures. Current methods do notperform effectively in the challenging scenarios arising from degraded or worn lane markingsand preclude the broader deployment of autonomous driving technologies. Additionally,many methods lack provisions for safe failures, and will return false positive detections asthe strongest lane marking candidate instead of declaring that no lane marking was found.This work proposes several changes to the current state of the art in robust lane de-tection and tracking and builds on existing methods using Dynamic Bayesian Networkswith heuristic features. A new training approach is proposed for learning heuristic fea-ture distributions from unlabelled data with greatly reduced sensitivity to initialization.The null hypothesis is then reformulated to provide a fail-safe so that in the absence of asuccessful detection, the lane detection system will be able to declare a detection failureinstead of producing a high-risk false positive. The Bayesian Inference formulation usedin the current state of the art is then generalized to support different lane marking config-urations. Lastly, a stereo threshold filter is proposed as a method for reducing dangerousfalse positives caused by out-of-plane features.The proposed methods were tested against several datasets, including the new WAterlooRepresentative Roads (WARR) dataset, covering a 40 km route around the Waterloo regioncaptured at 3 Hz. When tested against the KITTI dataset, the proposed stereo filter has anegative predictive value of over 95% and provides a dramatic reduction in dangerous falsealarms. The proposed detection method is effective in scenarios that match the expectedsingle-lane road model and fails safely in 84% of the scenarios that do not adhere to theexpected model. Of the dangerous failures, approximately 90% were model failures andmay be corrected through use of a different detector within the proposed generalized formthat is more compatible with the failure scenario. Such a reduction in model failures coulddramatically reduce the rate of potentially dangerous failures and represents a significantimprovement on the state of the art.
机译:车道检测是自动驾驶中一项基本且具有挑战性的任务,必须安全,可靠地执行以免发生灾难性故障。当前的方法不能有效地解决因车道标志恶化或磨损而产生的挑战性场景,并且妨碍了自动驾驶技术的广泛应用。此外,许多方法都缺乏安全故障的规定,并且会返回错误的阳性检测结果作为最强的车道标记候选项,而不是声明未发现任何车道标记。这项工作提出了对鲁棒车道检测和鲁棒检测的最新技术的一些更改。使用具有启发式功能的动态贝叶斯网络跟踪并建立在现有方法的基础上。提出了一种新的训练方法,用于从未标记的数据中学习启发式特征分布,并且对初始化的敏感性大大降低。然后重新构造无效假设以提供故障保护功能,这样在没有成功检测的情况下,车道检测系统将成为能够声明检测失败,而不是产生高风险的假阳性。然后,对当前技术水平中使用的贝叶斯推断公式进行概括,以支持不同的车道标记配置。最后,提出了一种立体阈值滤波器作为减少平面外特征引起的危险误报的方法,并针对包括新的WAterlooRepresentative Roads(WARR)数据集在内的多个数据集进行了测试,该数据集覆盖了40 km的路线。滑铁卢地区以3 Hz的频率捕获。当针对KITTI数据集进行测试时,所提出的立体声滤波器的负预测值超过95%,并且可以大大减少危险的虚假警报。提出的检测方法在与预期的单车道模型相匹配的情况下是有效的,而在不符合预期模型的情况下,有84%的情况是安全的。在危险故障中,大约90%是模型故障,可以通过在建议的广义形式内使用与故障场景更兼容的其他检测器进行纠正。模型故障的这种减少可能会大大降低潜在危险故障的发生率,并代表着对现有技术水平的重大改进。

著录项

  • 作者

    Smart Michael;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号