首页> 美国卫生研究院文献>Molecular Therapy. Nucleic Acids >ICLRBBN: a tool for accurate prediction of potential lncRNA disease associations
【2h】

ICLRBBN: a tool for accurate prediction of potential lncRNA disease associations

机译:ICLRBBN:一种准确预测潜在的LNCRNA疾病协会的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Growing evidence has elucidated that long non-coding RNAs (lncRNAs) are involved in a variety of complex diseases in human bodies. In recent years, it has become a hot topic to develop effective computational models to identify potential lncRNA-disease associations. In this article, a novel method called ICLRBBN (Internal Confidence-Based Local Radial Basis Biological Network) is proposed to detect potential lncRNA-disease associations by adopting an internal confidence-based radial basis biological network. In ICLRBBN, a novel internal confidence-based collaborative filtering recommendation algorithm was designed first to mine hidden features between lncRNAs and diseases, which guarantees that ICLRBBN can be more effectively applied to predict new diseases. Then, a unique three-layer local radial basis function network consisting of diseases and lncRNAs was constructed, based on which the association probability between diseases and lncRNAs was calculated by combining different characteristics of lncRNAs with local information of diseases. Finally, we compared ICLRBBN with 6 state-of-the-art methods based on two different validation frameworks. Simulation results showed that area under the receiver operating characteristic curve (AUC) values achieved by ICLRBBN outperformed all competing methods. Furthermore, case studies illustrated that ICLRBBN has a promising future as a powerful tool in the practical application of lncRNA-disease association prediction. A web service for prediction of potential lncRNA-disease associations is available at http://leelab2997.cn/.
机译:日益增长的证据阐明了长期的非编码RNA(LNCRNA)参与人体中各种复杂疾病。近年来,它已成为开发有效计算模型以识别潜在的LNCRNA疾病协会的热门话题。在本文中,提出了一种称为ICLRBBN(基于内部置信局部径向基础生物网络)的新方法,以通过采用内部置信径向基础生物网络来检测潜在的LNCRNA疾病关联。在ICLRBBN中,首先设计了一种新型内部置信基础协作过滤推荐算法,以挖掘LNCRNA和疾病之间的隐藏特征,这保证了ICLRBBN可以更有效地应用于预测新疾病。然后,构建了一种由疾病和LNCRNA组成的独特的三层局部径向基函数网络,基于该疾病和LNCRNA的疾病和LNCRNA之间的关联概率通过与疾病的局部信息组合来计算疾病和LNCRNA。最后,我们将IclRBBN与基于两个不同的验证框架的最先进的方法进行了比较。仿真结果表明,ICLRBBN实现的接收器操作特征曲线(AUC)值下的区域优于所有竞争方法。此外,案例研究表明,ICLRBBN在LNCRNA疾病关联预测的实际应用中具有有希望的未来作为一种强大的工具。用于预测潜在的LNCRNA疾病关联的Web服务是在http://leelab2997.cn/上获得的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号