首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Novel Method for LncRNA-Disease Association Prediction Based on an lncRNA-Disease Association Network
【24h】

A Novel Method for LncRNA-Disease Association Prediction Based on an lncRNA-Disease Association Network

机译:基于LNCRNA疾病协会网络的LNCRNA疾病关联预测新方法

获取原文
获取原文并翻译 | 示例

摘要

An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Predicting potential lncRNA-disease associations can improve our understanding of the molecular mechanisms of human diseases and aid in finding biomarkers for disease diagnosis, treatment, and prevention. In this paper, we constructed a bipartite network based on known lncRNA-disease associations; based on this work, we proposed a novel model for inferring potential lncRNA-disease associations. Specifically, we analyzed the properties of the bipartite network and found that it closely followed a power-law distribution. Moreover, to evaluate the performance of our model, a leave-one-out cross-validation (LOOCV) framework was implemented, and the simulation results showed that our computational model significantly outperformed previous state-of-the-art models, with AUCs of 0.8825, 0.9004, and 0.9292 for known lncRNA-disease associations obtained from the LncRNADisease database, Lnc2Cancer database, and MNDR database, respectively. Thus, our approach may be an excellent addition to the biomedical research field in the future.
机译:越来越多的研究表明,长期非编码的RNA(LNCRNA)在许多重要的生物过程中起着关键作用。预测潜在的LNCRNA疾病关联可以改善我们对人类疾病分子机制的理解,并有助于寻找生物标志物进行疾病诊断,治疗和预防。在本文中,我们构建了基于已知的LNCRNA疾病关联的二分网络;基于这项工作,我们提出了一种用于推断潜在的LNCRNA疾病关联的新型模型。具体而言,我们分析了二分网络的性质,发现它紧随其后的幂律分布。此外,为了评估我们模型的性能,实施了一个休假交叉验证(LOOCV)框架,仿真结果表明,我们的计算模型以前的最先进模型明显优于AUC对于从LNCRNadisease数据库,LNC2Cancer数据库和MNDR数据库获得的已知的LNCRNA疾病关联0.8825,0.9004和0.9292。因此,我们的方法可能是未来生物医学研究领域的优秀补充。

著录项

  • 来源
  • 作者单位

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Peoples R China|Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Xiangtan 411105 Peoples R China;

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Peoples R China|Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Xiangtan 411105 Peoples R China|Changsha Univ Coll Comp Engn Appl Math Changsha 410001 Hunan Peoples R China;

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Peoples R China|Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Xiangtan 411105 Peoples R China|Changsha Univ Coll Comp Engn Appl Math Changsha 410001 Hunan Peoples R China;

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Peoples R China|Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Xiangtan 411105 Peoples R China;

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Peoples R China|Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Xiangtan 411105 Peoples R China;

    Xiangtan Univ Coll Informat Engn Xiangtan 411105 Peoples R China|Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Xiangtan 411105 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LncRNA-disease associations; bipartite network; computational model;

    机译:LNCRNA疾病关联;二分网络;计算模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号