首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting Weather and Management Data
【2h】

Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting Weather and Management Data

机译:基于化学指纹天气和管理数据的葡萄酒感官曲线机械学习型葡萄酒感官谱与垂直葡萄酒的颜色

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Important wine quality traits such as sensory profile and color are the product of complex interactions between the soil, grapevine, the environment, management, and winemaking practices. Artificial intelligence (AI) and specifically machine learning (ML) could offer powerful tools to assess these complex interactions and their patterns through seasons to predict quality traits to winegrowers close to harvest and before winemaking. This study considered nine vintages (2008–2016) using near-infrared spectroscopy (NIR) of wines and corresponding weather and management information as inputs for artificial neural network (ANN) modeling of sensory profiles (Models 1 and 2 respectively). Furthermore, weather and management data were used as inputs to predict the color of wines (Model 3). Results showed high accuracy in the prediction of sensory profiles of vertical wine vintages using NIR (Model 1; R = 0.92; slope = 0.85), while better models were obtained using weather/management data for the prediction of sensory profiles (Model 2; R = 0.98; slope = 0.93) and wine color (Model 3; R = 0.99; slope = 0.98). For all models, there was no indication of overfitting as per ANN specific tests. These models may be used as powerful tools to winegrowers and winemakers close to harvest and before the winemaking process to maintain a determined wine style with high quality and acceptability by consumers.
机译:重要的葡萄酒质量特征,如感官轮廓和颜色是土壤,葡萄,环境,管理和酿酒实践之间复杂的相互作用的产物。人工智能(AI)和专门的机器学习(ML)可以提供强大的工具,以评估这些复杂的互动及其通过季节的模式,以预测对收获和酿酒之前的葡萄酒饮料的质量性状。本研究考虑了使用赖新的近红外光谱(NIR)以及相应的天气和管理信息作为人工神经网络(ANN)的输入的近红外光谱(NIR)对感觉型材(分别的模型1和2)的输入。此外,天气和管理数据被用作预测葡萄酒颜色的输入(模型3)。结果在使用NIR(型号1; r = 0.92;斜率= 0.85)预测垂直葡萄酒葡萄酒的感觉型材的高精度= 0.98;斜率= 0.93)和葡萄酒颜色(型号3; r = 0.99;斜率= 0.98)。对于所有型号,根据ANN特定测试,没有迹象表明过度装修。这些型号可用作葡萄酒师和酿酒师的强大工具,靠近收获,在酿酒过程之前,以消费者的高质量和可接受性保持确定的葡萄酒风格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号