首页> 美国卫生研究院文献>Briefings in Bioinformatics >Recent applications of deep learning and machine intelligence on in silico drug discovery: methods tools and databases
【2h】

Recent applications of deep learning and machine intelligence on in silico drug discovery: methods tools and databases

机译:深度学习和机器智能在计算机硅药物发现中的最新应用:方法工具和数据库

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as ‘virtual screening’ (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance.
机译:识别药物/化合物及其靶标之间的相互作用对开发新药物至关重要。筛查实验(即生物测定)经常用于此目的;然而,实验方法不足以探索新颖的药物-靶标相互作用,这主要是由于可行性问题,因为它们劳动强度大,成本高且耗时。在过去的几十年中,出现了一个称为“虚拟筛选”(VS)的计算领域,通过统计估计化合物与生物靶标之间未知的生物相互作用来辅助实验性药物发现研究。这些方法利用化合物和/或靶蛋白的物理化学和结构特性以及经过实验验证的生物相互作用信息来生成预测模型。最近,在VS中应用了复杂的机器学习技术来提高预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号