首页> 美国卫生研究院文献>PLoS Neglected Tropical Diseases >Potential Biases in Estimating Absolute and Relative Case-Fatality Risks during Outbreaks
【2h】

Potential Biases in Estimating Absolute and Relative Case-Fatality Risks during Outbreaks

机译:估计暴发期间绝对和相对病例致命风险的潜在偏向

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimating the case-fatality risk (CFR)—the probability that a person dies from an infection given that they are a case—is a high priority in epidemiologic investigation of newly emerging infectious diseases and sometimes in new outbreaks of known infectious diseases. The data available to estimate the overall CFR are often gathered for other purposes (e.g., surveillance) in challenging circumstances. We describe two forms of bias that may affect the estimation of the overall CFR—preferential ascertainment of severe cases and bias from reporting delays—and review solutions that have been proposed and implemented in past epidemics. Also of interest is the estimation of the causal impact of specific interventions (e.g., hospitalization, or hospitalization at a particular hospital) on survival, which can be estimated as a relative CFR for two or more groups. When observational data are used for this purpose, three more sources of bias may arise: confounding, survivorship bias, and selection due to preferential inclusion in surveillance datasets of those who are hospitalized and/or die. We illustrate these biases and caution against causal interpretation of differential CFR among those receiving different interventions in observational datasets. Again, we discuss ways to reduce these biases, particularly by estimating outcomes in smaller but more systematically defined cohorts ascertained before the onset of symptoms, such as those identified by forward contact tracing. Finally, we discuss the circumstances in which these biases may affect non-causal interpretation of risk factors for death among cases.
机译:在新出现的传染病的流行病学调查中,有时在已知传染病的新爆发中,估计病死率风险(CFR)(即一个人因感染而死于感染的可能性)是一项高度优先的工作。在极具挑战性的情况下,通常可用于其他目的(例如监视)的数据可用于估算总体CFR。我们描述了两种可能影响总体病死率估算的偏见形式-优先确定严重病例和因报告延误造成偏倚-并回顾了过去流行病中已经提出和实施的解决方案。同样令人感兴趣的是特定干预措施(例如住院或在特定医院的住院)对生存的因果影响的估计,可以将其估计为两组或更多组的相对CFR。当将观测数据用于此目的时,可能会出现三种更多的偏倚来源:混杂,生存偏见以及由于优先考虑将住院和/或死亡者的监测数据包括在内而导致的选择。我们说明了这些偏见,并警告在观察数据集中接受不同干预措施的患者之间应避免因差异性CFR的原因解释。再次,我们讨论减少这些偏见的方法,特别是通过在症状发作之前确定的较小但更系统地定义的队列中评估结果,例如通过正向接触追踪确定的队列。最后,我们讨论了在哪些情况下这些偏见可能影响病例死亡风险因素的非因果解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号