首页> 美国卫生研究院文献>other >Genome-wide association test of multiple continuous traits using imputed SNPs
【2h】

Genome-wide association test of multiple continuous traits using imputed SNPs

机译:使用推算的SNP对多个连续性状进行全基因组关联测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

More and more large cohort studies have conducted or are conducting genome-wide association studies (GWAS) to reveal the genetic components of many complex human diseases. These large cohort studies often collected a broad array of correlated phenotypes that reflect common physiological processes. By jointly analyzing these correlated traits, we can gain more power by aggregating multiple weak effects and shed light on the mechanisms underlying complex human diseases. The majority of existing multi-trait association test methods are based on jointly modeling the multivariate traits conditional on the genotype as covariate, and can readily accommodate the imputed SNPs by using their imputed dosage as a covariate. An alternative class of multi-trait association tests is based on the inverted regression, which models the distribution of genotypes conditional on the covariate and multivariate traits, and has been shown to have competitive performance. To our knowledge, all existing inverted regression approaches have implicitly used the “best-guess” genotypes, which is not efficient and known to lead to dramatic power loss, and there have not been any proposed methods of incorporating imputation uncertainty into inverted regressions. In this work, we propose a general and efficient framework that can account for the imputation uncertainty to further improve the association test power of inverted regression models for imputed SNPs. We demonstrate through extensive numerical studies that the proposed method has competitive performance. We further illustrate its usefulness by application to association test of diabetes-related glycemic traits in the Atherosclerosis Risk in Communities (ARIC) Study.
机译:越来越多的大型队列研究已经或正在进行全基因组关联研究(GWAS),以揭示许多复杂人类疾病的遗传成分。这些大型队列研究通常收集反映相关生理过程的各种相关表型。通过共同分析这些相关的特征,我们可以通过聚合多个弱效因素并了解潜在的复杂人类疾病的机制来获得更大的力量。现有的大多数多性状关联测试方法大多数是基于对以基因型为协变量的多性状进行联合建模的,并且可以通过使用其估算剂量作为协变量轻松容纳估算的SNP。多特征关联测试的另一类是基于反向回归的,该模型对以协变量和多特征为条件的基因型分布进行建模,并显示出具有竞争性。据我们所知,所有现有的反向回归方法都隐含地使用了“最佳猜测”基因型,这种基因型效率不高,并且已知会导致急剧的功率损失,并且还没有提出将归因不确定性纳入反向回归的方法。在这项工作中,我们提出了一个通用且有效的框架,该框架可以解决插补不确定性,以进一步提高插补SNP的反向回归模型的关联检验能力。通过大量的数值研究,我们证明了所提出的方法具有竞争力。我们通过在社区动脉粥样硬化风险研究中将其应用于糖尿病相关血糖特征的关联测试来进一步说明其有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号