首页> 美国卫生研究院文献>other >A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals
【2h】

A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals

机译:具有字典基础和空间正则化的新型Richardson-Lucy模型用于隔离各向同性信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has been increasingly used in neuroscience imaging over the last decade. Partial volume effects (PVEs) exist in sampling signal for many physical and actual reasons, which lead to inaccurate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from diffusion-weighted signal, which can provide more accurate estimation of fiber orientations. In this work, we use a novel response function (RF) and the correspondent fiber orientation distribution function (fODF) to construct different signal models, in which case the fODF is represented using dictionary basis function. We then put forward a new index Piso, which is a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL) model is usually used in the field of digital image processing to solve the problem of spherical deconvolution caused by highly ill-posed least-squares algorithm. In this case, we propose an innovative model integrating RL model with spatial regularization to settle the suggested double-models, which improve noise resistance and accuracy of imaging. Experimental results of simulated and real data show that the proposal method, which we call iRL, can robustly reconstruct a more accurate fODF and the quantitative index Piso performs better than fractional anisotropy and general fractional anisotropy.
机译:扩散加权磁共振成像是一种非侵入性成像方法,在过去的十年中已越来越多地用于神经科学成像。由于许多物理和实际原因,采样信号中存在部分体积效应(PVE),这会导致光纤成像不准确。我们通过将各向同性信号与扩散加权信号分开来克服了PVE的影响,这可以提供更准确的纤维取向估计。在这项工作中,我们使用新颖的响应函数(RF)和相应的纤维取向分布函数(fODF)来构建不同的信号模型,在这种情况下,fODF用字典基函数表示。然后,我们提出了一个新的指数Piso,它是fODF的一部分,用于定量白和灰质。经典的Richardson-Lucy(RL)模型通常用于数字图像处理领域,以解决由高度不适定的最小二乘算法引起的球形反卷积问题。在这种情况下,我们提出了一种将RL模型与空间正则化相结合的创新模型,以解决建议的双重模型,从而提高了抗噪性和成像精度。模拟和真实数据的实验结果表明,我们称为iRL的提议方法可以可靠地重建更准确的fODF,并且定量指标Piso的性能优于分数各向异性和一般分数各向异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号