首页> 外文学位 >Fast regularization design for tomographic image reconstruction for uniform and isotropic spatial resolution.
【24h】

Fast regularization design for tomographic image reconstruction for uniform and isotropic spatial resolution.

机译:用于层析图像重建的快速正则设计,可实现均匀且各向同性的空间分辨率。

获取原文
获取原文并翻译 | 示例

摘要

Statistical methods for tomographic image reconstruction have improved noise and spatial resolution properties that may improve image quality in X-ray CT and PET. Final converged solutions from maximum likelihood (ML) and weighted least squares (WLS) reconstruction are often extremely noisy due to the ill conditioned nature of the system. One can stop the iterative algorithm before convergence and before images become too noisy, however this results in non-uniform and anisotropic spatial resolution because resolution uniformity and isotropy improve with successive iterations. Alternatively, one can run the iterative algorithm to completion and post-filter the resulting noise, however, this often requires a large number of iterations. Instead we use penalized likelihood (PL) and penalized weighted least squares (PWLS) with a roughness penalty to regularize the problem which filters out noise, and leads to faster convergence. Unfortunately, interactions between the weightings, which are implicit in PL methods and explicit in PWLS methods, and conventional quadratic regularization lead to nonuniform and anisotropic spatial resolution. Previous work focuses on matrix algebra methods to design data-dependent, shift variant regularizers that improve resolution uniformity. This thesis develops fast analytical regularization design methods for 2D fan-beam X-ray CT imaging, for which parallel-beam tomography is a special case. This thesis uses continuous space analogs to greatly simplify the regularization design problem which yields a mostly analytical solution for efficient computation. This thesis extends regularization design to 3D systems using a computationally efficient iterative approach. Finally, this thesis explores using 2D regularization with z-dimension post-reconstruction denoising. This is an attempt to combine the improved XY isotropy associated with 2D regularization design, and the computational efficiency of the mostly analytical solution and use it for 3D geometries. The spatial resolution and noise properties of this method is analyzed for quadratic regularizers. Simulation results have also been performed using non-quadratic edge-preserving regularizers which show that, though this method has potential, more work needs to be done to ensure that the spatial resolution and noise properties of this method are desirable.
机译:层析图像重建的统计方法具有改进的噪声和空间分辨率特性,可以改善X射线CT和PET中的图像质量。由于系统的条件恶劣,来自最大似然(ML)和加权最小二乘(WLS)重构的最终收敛解通常非常嘈杂。可以在收敛之前和图像变得过于嘈杂之前停止迭代算法,但是这会导致空间分辨率不一致和各向异性,因为分辨率均匀性和各向同性随着后续迭代的进行而提高。另一种方法是,可以运行迭代算法以完成并对产生的噪声进行后滤波,但是,这通常需要大量的迭代。取而代之的是,我们使用罚分似然度(PL)和罚分加权最小二乘(PWLS)(具有粗糙度损失)来对滤除噪声并导致更快收敛的问题进行正则化。不幸的是,权重之间的相互作用(在PL方法中是隐式的,在PWLS方法中是显式的),以及常规的二次正则化导致空间分辨率不一致和各向异性。先前的工作集中在矩阵代数方法上,以设计与数据相关的,移位变量正则化器,以提高分辨率的一致性。本文开发了二维扇形束X射线CT成像的快速分析正则化设计方法,其中平行束层析成像是一种特例。本文使用连续空间类似物极大地简化了正则化设计问题,这为高效计算提供了主要为解析的解决方案。本文使用计算有效的迭代方法将正则化设计扩展到3D系统。最后,本文探索了将二维正则化与z维重构后去噪一起使用的方法。这是尝试将与2D正则化设计相关联的改进的XY各向同性与大多数分析解决方案的计算效率结合起来,并将其用于3D几何形状。针对二次正则器分析了该方法的空间分辨率和噪声特性。还使用非二次边沿保留正则器进行了仿真结果,结果表明,尽管该方法具有潜力,但需要做更多的工作以确保该方法的空间分辨率和噪声特性是理想的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号