首页> 美国卫生研究院文献>other >The Impact of Acoustic Radiation Force Excitation Geometry on ShearWave Dispersion and Attenuation Estimates
【2h】

The Impact of Acoustic Radiation Force Excitation Geometry on ShearWave Dispersion and Attenuation Estimates

机译:声辐射力激发几何形状对剪切力的影响波色散和衰减估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously presented in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically-derived shear wave data and shear wave data generated using finite element method models. Shear wave dispersion andattenuation bias (up to 15% for dispersion and 41% for attenuation) is greaterfor more tightly-focused acoustic radiation force sources with smaller depths offield relative to their lateral extent (height-to-width ratios < 16).Dispersion and attenuation errors associated with assuming a cylindricalgeometric shear wave decay in SWEI can be appreciable and should be consideredwhen analyzing the viscoelastic properties of tissues with acoustic radiationforce source distributions with limited depths-of-field.
机译:剪切波弹性成像(SWEI)表征人体组织的机械特性,以区分健康组织和患病组织。商用扫描仪倾向于使用飞行时间方法来重建感兴趣区域的剪切波速度,假设组织是弹性的并且剪切波速度不依赖于此,则该飞行时间方法会向最终用户报告单个剪切波速度(或弹性模量)。剪切波的频率含量。然而,已知人体组织是粘弹性的,导致分散和衰减。先前已在文献中介绍了剪切波光谱法和频谱方法来量化剪切波的色散和衰减,通常假设声辐射力激励充当具有已知几何剪切波振幅衰减的圆柱源。这项工作量化了剪切散布和衰减估计中的偏差,这与在具有有限深度范围的剪切波源(如在弹性和粘弹性介质中通常在现实的焦距几何中经常发生)应用于圆柱波假设有关。使用分析得出的剪切波数据和使用有限元方法模型生成的剪切波数据对偏差进行量化。剪切波频散和衰减偏置(色散高达15%,衰减高达41%)更大适用于深度较小的聚焦声辐射力源相对于其横向范围的场(高宽比<16)。与假定圆柱体有关的色散和衰减误差SWEI中的几何剪切波衰减可能是可观的,应该考虑用声辐射分析组织的粘弹性时有限景深的力源分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号