首页> 外文期刊>Ultrasound in Medicine and Biology >IMPACT OF ACOUSTIC RADIATION FORCE EXCITATION GEOMETRY ON SHEAR WAVE DISPERSION AND ATTENUATION ESTIMATES
【24h】

IMPACT OF ACOUSTIC RADIATION FORCE EXCITATION GEOMETRY ON SHEAR WAVE DISPERSION AND ATTENUATION ESTIMATES

机译:声学辐射力激发几何对剪力波色散和衰减估计的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a re g ion of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to he viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios 16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. (C) 2018 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
机译:剪切波弹性成像(SWEI)表征人组织的机械性能,以区分来自患病组织的健康。商业扫描仪倾向于使用在组织是弹性和剪切波速下的假设下,使用飞行时间方法向最终用户报告单个剪切波速(或弹性模量)到最终用户来重建感兴趣的感兴趣的离子的剪力速度。不是依赖于剪切波的频率内容。然而,人体组织是粘弹性的粘弹性,导致分散和衰减。先前已经报道了剪切波谱和光谱方法,以定量剪切波形分散和衰减,通常是假设声辐射力激励用作具有已知几何剪切波幅度衰减的圆柱源。当施加到具有有限深度范围的剪切波源时,该工作量化了与使得具有有限深度范围的剪切波来源的剪切色谱假设相关的剪切色散和衰减估计,如逼真的焦距,以弹性和粘弹性介质。使用使用有限元方法模型产生的分析衍生的剪切波数据和剪切波数据量化偏差。剪切波分散和衰减偏差(对于分散的衰减和41%,衰减为41%)对于更紧密的声学辐射力源,相对于其横向范围(高度到宽度比& 16),更紧密聚焦的声学辐射力源更大。 。与假设SWEI中的圆柱形几何剪切波衰减相关联的分散和衰减误差可以是可观的,并且在分析具有有限的场景深度的声辐射力源分布的组织的粘弹性特性时,应考虑。 (c)2018年中国超声波的世界联合会和生物学。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号