首页> 美国卫生研究院文献>Human Brain Mapping >A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction
【2h】

A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction

机译:fMRI约束的MEG / EEG源重建的参数经验贝叶斯框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe an asymmetric approach to fMRI and MEG/EEG fusion in which fMRI data are treated as empirical priors on electromagnetic sources, such that their influence depends on the MEG/EEG data, by virtue of maximizing the model evidence. This is important if the causes of the MEG/EEG signals differ from those of the fMRI signal. Furthermore, each suprathreshold fMRI cluster is treated as a separate prior, which is important if fMRI data reflect neural activity arising at different times within the EEG/MEG data. We present methodological considerations when mapping from a 3D fMRI Statistical Parametric Map to a 2D cortical surface and thence to the covariance components used within our Parametric Empirical Bayesian framework. Our previous introduction of a canonical (inverse-normalized) cortical mesh also allows deployment of fMRI priors that live in a template space; for example, from a group analysis of different individuals. We evaluate the ensuing scheme with MEG and EEG data recorded simultaneously from 12 participants, using the same face-processing paradigm under which independent fMRI data were obtained. Because the fMRI priors become part of the generative model, we use the model evidence to compare (i) multiple versus single, (ii) valid versus invalid, (iii) binary versus continuous, and (iv) variance versus covariance fMRI priors. For these data, multiple, valid, binary, and variance fMRI priors proved best for a standard Minimum Norm inversion. Interestingly, however, inversion using Multiple Sparse Priors benefited little from additional fMRI priors, suggesting that they already provide a sufficiently flexible generative model. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.
机译:我们描述了一种不对称的fMRI和MEG / EEG融合方法,其中fMRI数据被视为电磁源的经验先验,因此,通过最大化模型证据,它们的影响取决于MEG / EEG数据。如果MEG / EEG信号的原因与fMRI信号的原因不同,这一点很重要。此外,将每个阈上功能磁共振成像簇视为一个单独的先验,如果功能磁共振成像数据反映出EEG / MEG数据在不同时间产生的神经活动,则这一点很重要。当从3D fMRI统计参数图映射到2D皮质表面并由此到我们的参数经验贝叶斯框架内使用的协方差组件时,我们提出了方法上的考虑。我们先前引入的规范化(逆归一化)皮质网格还允许部署驻留在模板空间中的功能磁共振成像先验。例如,通过对不同个人的分组分析。我们使用从相同的人脸处理范例中获得独立的fMRI数据的12个参与者同时记录的MEG和EEG数据来评估后续方案。因为fMRI先验成为生成模型的一部分,所以我们使用模型证据来比较(i)多个与单个,(ii)有效与无效,(iii)二元对连续,以及(iv)方差与协方差fMRI先验。对于这些数据,事实证明,多重,有效,二进制和方差fMRI先验是标准最小范数反演的最佳选择。然而,有趣的是,使用多个稀疏先验的反演得益于额外的功能磁共振成像先验,这表明它们已经提供了足够灵活的生成模型。嗡嗡声大脑Mapp,2010年。©2010 Wiley-Liss,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号