首页> 外文学位 >Conductivity estimation with EEG/MEG brain source localization in a finite element head model.
【24h】

Conductivity estimation with EEG/MEG brain source localization in a finite element head model.

机译:在有限元头部模型中用脑电图/脑电图脑源定位进行电导率估计。

获取原文
获取原文并翻译 | 示例

摘要

Brain source localization with EEG and MEG modalities provides a useful means of identifying and localizing bioelectric source in the brain and has been used as an important tool in neuroscience and in clinical applications. Due to modern imaging technology, one can construct a subject specific volume conductor model from a set of MRI or CT images that can improve the accuracy of source localization over generic models. Finite element method makes it possible to use the realistic geometry from the subject specific imaging data and to assign tissue conductivity in a flexible way. The dissertation works use the FEM volume conductor model and studied the following scientific issues in FEM source localization.;The first study is to investigate the impact of dipole models and numerical solvers on solution accuracy and computational efficiency. The accuracy of the forward solution has a direct impact on the accuracy of inverse localization that reconstructs current dipoles from head surface potentials by means of iterative forward problems. We studied the impact of dipole models (Venant, partial integration and subtraction) on the accuracy of forward solution by EEG simulation and evaluated the computational efficiency of the FE solvers (AMG-CG, IC-CG, Jacobi-CG). The second study is to estimate the tissue conductivity with EEG data during source localization. Bioelectric source analysis is sensitive to geometry and conductivity properties of the different head tissues. We developed a Low Resolution Conductivity Estimation (LRCE) method using simulated annealing optimization on high resolution finite element models that individually optimizes a realistically-shaped volume conductor with regard to the tissue conductivities. The third study is to stabilize the LRCE by adding MEG modality to the EEG. The combined analysis with an iteration scheme takes the source parameter from the MEG dipole fit that has much less sensitivity to conductivity and uses it as a prior constraint on the source for the EEG LRCE. We have shown the viability of an approach that computes its own conductivity values and thus produces a more robust estimate of current sources. Using the LRCE method, the individually optimized volume conductor model can be used for the analysis of clinical or cognitive data acquired from the same subject.
机译:具有EEG和MEG方式的脑源定位提供了一种在脑中识别和定位生物电源的有用手段,并已被用作神经科学和临床应用中的重要工具。由于采用了现代成像技术,因此可以从一组MRI或CT图像中构建特定于对象的体积导体模型,从而可以比通用模型提高源定位的准确性。有限元方法可以使用来自对象特定成像数据的逼真的几何形状,并以灵活的方式分配组织电导率。论文采用有限元体积导体模型,研究了有限元源定位中的以下科学问题。第一项研究是研究偶极子模型和数值求解器对求解精度和计算效率的影响。正解的精度直接影响逆定位的精度,逆定位的精度是通过迭代正向问题从磁头表面电位重建电流偶极子的。我们通过EEG仿真研究了偶极子模型(Venant,部分积分和减法)对正解精度的影响,并评估了有限元求解器(AMG-CG,IC-CG,Jacobi-CG)的计算效率。第二项研究是利用源定位期间的EEG数据估算组织电导率。生物电源分析对不同头部组织的几何形状和电导率特性敏感。我们使用高分辨率有限元模型上的模拟退火优化技术开发了低分辨率电导率估计(LRCE)方法,该方法针对组织电导率分别优化了逼真的形状的体积导体。第三项研究是通过向脑电图添加MEG模式来稳定LRCE。带有迭代方案的组合分析从MEG偶极子拟合中获取对电导率敏感度低得多的源参数,并将其用作对EEG LRCE源的先验约束。我们已经展示了一种方法的可行性,该方法可以计算自己的电导率值,从而对电流源进行更可靠的估算。使用LRCE方法,可以将单独优化的体积导体模型用于分析从同一受试者获得的临床或认知数据。

著录项

  • 作者

    Lew, Seok.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号