【2h】

Feedback traps for virtual potentials

机译:虚拟潜力的反馈陷阱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without ‘touching’ them (e.g. by putting them in a small box or attaching them to a tether). Feedback traps can do more than trap molecules: they can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop—absent the feedback, there is only an object diffusing in a fluid—we are free to specify and then manipulate in time an arbitrary potential U(x,t). Here, we review recent applications of feedback traps to studies on the fundamental connections between information and thermodynamics, a topic where feedback plays an even more fundamental role. We discuss how recursive maximum-likelihood techniques allow continuous calibration, to compensate for drifts in experiments that last for days. We consider ways to estimate work and heat, using them to measure fluctuating energies to a precision of ±0.03 kT over these long experiments. Finally, we compare work and heat measurements of the costs of information erasure, the Landauer limit of kT ln 2 per bit of information erased. We argue that, when you want to know the average heat transferred to a bath in a long protocol, you should measure instead the average work and then infer the heat using the first law of thermodynamics.This article is part of the themed issue ‘Horizons of cybernetical physics’.
机译:反馈陷阱是用于陷阱和操纵单个带电对象(例如溶液中的分子)的工具。作为光学镊子和其他单分子技术的替代方法,它们使用反馈来抵消目标分子的布朗运动。陷阱首先获取有关分子位置的信息,然后施加电反馈力来移动分子。由于在小规模上电子力量要比光学力量强,因此反馈陷阱是捕获单个分子而不“触摸”它们的最佳方法(例如,将它们放在一个小盒子中或将它们固定在系绳上)。反馈陷阱的作用不仅限于捕获分子:它们还可以使目标对象承受力,该力被计算为所需势函数U(x)的梯度。如果反馈回路足够快,则会创建一个虚拟电势,其动力学将非常接近于实际电势U(x)中粒子的动力学。但是,由于动力学完全是反馈回路的结果-缺少反馈,因此只有物体在流体中扩散-我们可以自由指定,然后及时操纵任意势U(x,t)。在这里,我们回顾了反馈陷阱的最新应用,以研究信息与热力学之间的基本联系,而在这一主题中,反馈起着更为根本的作用。我们讨论了递归最大似然技术如何允许连续校准,以补偿持续数天的实验中的漂移。在这些漫长的实验中,我们考虑了估算功和热量的方法,用它们来测量波动的能量,精度为±0.03 kT。最后,我们比较了信息擦除成本的工作量和热量测量结果,即擦除的每比特信息的kT ln 2的Landauer极限。我们认为,如果您想了解长时间传输到浴池中的平均热量,则应该测量平均功,然后使用热力学第一定律推断热量。本文是主题``地平线''的一部分网络物理学”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号