首页> 美国卫生研究院文献>Environmental Engineering Science >Comparison of Advection–Diffusion Models and Neural Networks for Prediction of Advanced Water Treatment Effluent
【2h】

Comparison of Advection–Diffusion Models and Neural Networks for Prediction of Advanced Water Treatment Effluent

机译:对流扩散模型和神经网络在高级污水处理废水预测中的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An artificial neural network (ANN) can help in the prediction of advanced water treatment effluent and thus facilitate design practices. In this study, sets of 225 experimental data were obtained from a wastewater treatment process for the removal of phosphorus using oven-dried alum residuals in fixed-bed adsorbers. Five input variables (pH, initial phosphorus concentration, wastewater flow rate, porosity, and time) were used to test the efficiency of phosphorus removal at different times, and ANNs were then used to predict the effluent phosphorus concentration. Results of experiments that were conducted for different values of the input parameters made up the data used to train and test a multilayer perceptron using the back-propagation algorithm of the ANN. Values predicted by the ANN and the experimentally measured values were compared, and the accuracy of the ANN was evaluated. When ANN results were compared to the experimental results, it was concluded that the ANN results were accurate, especially during conditions of high phosphorus concentration. While the ANN model was able to predict the breakthrough point with good accuracy, the conventional advection–diffusion equation was not as accurate. A parametric study conducted to examine the effect of the initial pH and initial phosphorus concentration on the effluent phosphorus concentration at different times showed that lower influent pH values are the most suitable for this advanced treatment system.
机译:人工神经网络(ANN)可以帮助预测高级水处理废水,从而促进设计实践。在这项研究中,从废水处理过程中获得了225组实验数据,这些数据是使用固定床吸附器中的烘箱干燥的氧化铝残留物去除磷的。使用五个输入变量(pH,初始磷浓度,废水流速,孔隙率和时间)来测试不同时间的除磷效率,然后使用人工神经网络来预测废水中的磷浓度。针对不同输入参数值进行的实验结果组成了用于使用ANN的反向传播算法训练和测试多层感知器的数据。将人工神经网络预测的值与实验测量值进行比较,并评估人工神经网络的准确性。将人工神经网络的结果与实验结果进行比较,可以得出结论,人工神经网络的结果是准确的,特别是在高磷浓度条件下。虽然人工神经网络模型能够以较高的精度预测突破点,但传统的对流扩散方程式的精度却不高。进行了一项参数研究,研究了初始pH和初始磷浓度在不同时间对废水中磷浓度的影响,结果表明,较低的进水pH值最适合此高级处理系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号