首页> 美国卫生研究院文献>AMIA Annual Symposium Proceedings >Empirical automated vocabulary discovery using large text corpora and advanced natural language processing tools.
【2h】

Empirical automated vocabulary discovery using large text corpora and advanced natural language processing tools.

机译:使用大型文本语料库和先进的自然语言处理工具进行经验性的自动词汇发现。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major impediment to the full benefit of electronic medical records is the lack of a comprehensive clinical vocabulary. Most existing vocabularies do not allow the full expressiveness of clinical diagnoses and findings that are often qualified by modifiers relating to severity, acuity, and temporal factors. One reason for the lack of expressivity is the inability of traditional manual construction techniques to identify the diversity of language used by clinicians. This study used advanced natural language processing tools to identify terminology in a clinical findings domain, compare its coverage with the UMLS Metathesaurus, and quantify the effort required to discover the additional terminology. It was found that substantial amounts of phrases and individual modifiers were not present in the UMLS Metathesaurus and that modest effort in human time and computer processing were needed to obtain the larger quantity of terms.
机译:电子病历充分受益的主要障碍是缺乏全面的临床词汇。现有的大多数词汇都无法充分表达临床诊断和发现,而这些诊断和发现通常可以通过与严重性,敏锐度和时间因素有关的修饰语来限定。缺乏表现力的原因之一是传统的手工构造技术无法识别临床医生所使用语言的多样性。这项研究使用了先进的自然语言处理工具来识别临床发现领域中的术语,将其覆盖范围与UMLS Metathesaurus进行比较,并量化发现其他术语所需的工作量。发现在UMLS元同义词库中不存在大量的短语和单个修饰词,并且需要大量的时间和计算机处理才能获得大量的术语。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号