首页> 美国卫生研究院文献>Biophysical Journal >Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves.
【2h】

Multigrid solution of the nonlinear Poisson-Boltzmann equation and calculation of titration curves.

机译:非线性Poisson-Boltzmann方程的多重网格解法和滴定曲线的计算。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although knowledge of the pKa values and charge states of individual residues is critical to understanding the role of electrostatic effects in protein structure and function, calculating these quantities is challenging because of the sensitivity of these parameters to the position and distribution of charges. Values for many different proteins which agree well with experimental results have been obtained with modified Tanford-Kirkwood theory in which the protein is modeled as a sphere (reviewed in Ref. 1); however, convergence is more difficult to achieve with finite difference methods, in which the protein is mapped onto a grid and derivatives of the potential function are calculated as differences between the values of the function at grid points (reviewed in Ref. 6). Multigrid methods, in which the size of the grid is varied from fine to coarse in several cycles, decrease computational time, increase rates of convergence, and improve agreement with experiment. Both the accuracy and computational advantage of the multigrid approach increase with grid size, because the time required to achieve a solution increases slowly with grid size. We have implemented a multigrid procedure for solving the nonlinear Poisson-Boltzmann equation, and, using lysozyme as a test case, compared calculations for several crystal forms, different refinement procedures, and different charge assignment schemes. The root mean square difference between calculated and experimental pKa values for the crystal structure which yields best agreement with experiment (1LZT) is 1.1 pH units, with the differences in calculated and experimental pK values being less than 0.6 pH units for 16 out of 21 residues. The calculated titration curves of several residues are biphasic.
机译:尽管了解单个残基的pKa值和电荷状态对于理解静电效应在蛋白质结构和功能中的作用至关重要,但是由于这些参数对电荷的位置和分布很敏感,因此计算这些量非常具有挑战性。用改良的Tanford-Kirkwood理论已经获得了许多与实验结果非常吻合的蛋白质的价值,在该理论中,蛋白质被建模为球形(参见参考文献1)。但是,用有限差分法很难实现收敛,在有限差分法中,将蛋白质映射到网格上,并计算潜在函数的导数,作为网格点处函数值之间的差异(参见参考文献6)。多网格方法,其中网格的大小在几个周期内从细到粗变化,减少了计算时间,提高了收敛速度,并提高了与实验的一致性。多网格方法的准确性和计算优势都随网格大小而增加,因为实现解决方案所需的时间随网格大小而缓慢增加。我们已经实现了用于解决非线性Poisson-Boltzmann方程的多网格程序,并以溶菌酶为测试用例,比较了几种晶体形式,不同的精制程序和不同的电荷分配方案的计算结果。与实验(1LZT)最为吻合的晶体结构的计算和实验pKa值之间的均方根差为1.1 pH单位,对于21个残基中的16个残基,计算和实验pK值的差异小于0.6 pH单位。几种残留物的计算滴定曲线是双相的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号