首页> 外文期刊>Journal of chemical theory and computation: JCTC >DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
【24h】

DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution

机译:DL_MG:一个平行的Multigrid Poisson和Poisson-Boltzmann求解器,用于真空和解决方案中的电子结构计算

获取原文
获取原文并翻译 | 示例
           

摘要

The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to similar to 10(9) unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.
机译:泊松方程的溶液是电子结构计算的关键步骤,产生静电电位量子机械Hamiltonian的关键部件。近几十年来,计算机性能的理论步和增加使得可以在复杂环境中模拟扩展系统的电子结构。这需要泊松方程的更复杂变体的解决方案,具有非均匀介电介电序,具有非线性依赖性的离子浓度,以及不同的边界条件。通常用于解决真空(或具有均相介电常数)的分析溶液在这些情况下不适用于真空(或均匀介电常数),并且必须使用数值方法。在这项工作中,我们提供了DL_MG,一种灵活,可扩展和准确的求解器库,专门用于解决在并行计算机上的现代大型电子结构计算中求解泊松方程的挑战。我们的求解器基于多重型方法,并使用迭代高阶缺陷校正方法来提高解决方案的准确性。使用两个化学相关的模型系统,我们在解决广义泊松和泊松 - Boltzmann方程时测试了DL_MG的准确性和计算性能,展示了与分析解决方案的优秀协议,以及高效的缩放到类似于10(9)个未知数和100多件CPU核心。我们还在实际大规模电子结构计算中应用了DL_MG,使用Onetep线性缩放电子结构包来研究2615原子蛋白配体复合体,具有常规可用的计算资源。在这些计算中,DL_MG的总体执行时间没有明显大于使用传统的基于FFT的求解器计算的计算所需的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号