首页> 美国卫生研究院文献>BMC Bioinformatics >Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming
【2h】

Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming

机译:量子耦合突变发现器:使用量子詹森-香农散度和CUDA编程预测蛋白质中功能上或结构上重要的位点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundThe identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites.
机译:背景鉴定蛋白质MSA中功能上或结构上重要的非保守残基位点是理解蛋白质功能的结构基础和分子机制的一项重要挑战。尽管有丰富的文献报道有关补偿突变以及用于检测那些重要残基的序列保守性分析,但先前的方法通常依赖于经典的信息理论方法。但是,这些措施通常没有考虑到氨基酸的差异/相似性,这些差异对这些残基可能至关重要。在这项研究中,我们提出了一种新的方法,即量子耦合突变查找器(QCMF),该方法在功能或结构上重要的位点的预测中结合了重要的异/相似氨基酸对信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号