首页> 美国卫生研究院文献>BMC Bioinformatics >Random generalized linear model: a highly accurate and interpretable ensemble predictor
【2h】

Random generalized linear model: a highly accurate and interpretable ensemble predictor

机译:随机广义线性模型:高度准确且可解释的整体预测器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundEnsemble predictors such as the random forest are known to have superior accuracy but their black-box predictions are difficult to interpret. In contrast, a generalized linear model (GLM) is very interpretable especially when forward feature selection is used to construct the model. However, forward feature selection tends to overfit the data and leads to low predictive accuracy. Therefore, it remains an important research goal to combine the advantages of ensemble predictors (high accuracy) with the advantages of forward regression modeling (interpretability). To address this goal several articles have explored GLM based ensemble predictors. Since limited evaluations suggested that these ensemble predictors were less accurate than alternative predictors, they have found little attention in the literature.
机译:背景众所周知,诸如随机森林之类的集合预测器具有较高的准确性,但是它们的黑盒预测很难解释。相反,广义线性模型(GLM)的解释性很强,尤其是在使用前向特征选择构建模型时。但是,前向特征选择往往会过度拟合数据并导致较低的预测准确性。因此,将整体预测器的优点(高精度)与正向回归建模的优点(可解释性)相结合仍然是一个重要的研究目标。为了实现这个目标,几篇文章探讨了基于GLM的整体预测器。由于有限的评估表明这些整体预测器的准确性不如其他预测器,因此在文献中很少有人注意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号