首页> 美国卫生研究院文献>The Open Medical Informatics Journal >A Hyper-Solution Framework for SVM Classification: Application for Predicting Destabilizations in Chronic Heart Failure Patients
【2h】

A Hyper-Solution Framework for SVM Classification: Application for Predicting Destabilizations in Chronic Heart Failure Patients

机译:SVM分类的超解决方案框架:预测慢性心力衰竭患者不稳定的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Support Vector Machines (SVMs) represent a powerful learning paradigm able to provide accurate and reliable decision functions in several application fields. In particular, they are really attractive for application in medical domain, where often a lack of knowledge exists. Kernel trick, on which SVMs are based, allows to map non-linearly separable data into potentially linearly separable one, according to the kernel function and its internal parameters value. During recent years non-parametric approaches have also been proposed for learning the most appropriate kernel, such as linear combination of basic kernels. Thus, SVMs classifiers may have several parameters to be tuned and their optimal values are usually difficult to be identified a-priori. Furthermore, combining different classifiers may reduce risk to perform errors on new unseen data. For such reasons, we present an hyper-solution framework for SVM classification, based on meta-heuristics, that searches for the most reliable hyper-classifier (SVM with a basic kernel, SVM with a combination of kernel, and ensemble of SVMs), and for its optimal configuration. We have applied the proposed framework on a critical and quite complex issue for the management of Chronic Heart Failure patient: the early detection of decompensation conditions. In fact, predicting new destabilizations in advance may reduce the burden of heart failure on the healthcare systems while improving quality of life of affected patients. Promising reliability has been obtained on 10-fold cross validation, proving our approach to be efficient and effective for an high-level analysis of clinical data.
机译:支持向量机(SVM)代表了强大的学习范例,能够在多个应用领域中提供准确而可靠的决策功能。特别地,它们对于在经常缺乏知识的医学领域中的应用确实具有吸引力。 SVM所基于的内核技巧允许根据内核函数及其内部参数值将非线性可分离的数据映射为潜在的线性可分离的数据。近年来,还提出了非参数方法来学习最合适的内核,例如基本内核的线性组合。因此,SVM分类器可能具有几个要调整的参数,其最佳值通常很难先验确定。此外,组合不同的分类器可以降低对新的看不见的数据执行错误的风险。因此,我们提出了一种基于元启发式的SVM分类的超解决方案框架,该框架可搜索最可靠的超分类器(具有基本内核的SVM,具有内核组合的SVM和SVM的集成),及其最佳配置。我们已将所建议的框架应用于处理慢性心力衰竭患者的一个关键且相当复杂的问题上:早期发现代偿失调情况。实际上,预先预测新的不稳定因素可能会减轻医疗保健系统的心力衰竭负担,同时改善受影响患者的生活质量。通过10倍交叉验证获得了有希望的可靠性,证明了我们的方法对于临床数据的高层次分析是有效而有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号