首页> 美国卫生研究院文献>NeuroImage : Clinical >Longitudinal deformation models spatial regularizations and learning strategies to quantify Alzheimers disease progression
【2h】

Longitudinal deformation models spatial regularizations and learning strategies to quantify Alzheimers disease progression

机译:纵向变形模型空间规则化和学习策略以量化阿尔茨海默氏病的进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease. These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we investigate the use of a classification model using logistic regression to address both issues (1) and (2) simultaneously. The classification of the patients therefore does not require any a priori definition of the most representative hippocampal areas potentially related to the disease, as they are automatically detected. We first quantify deformations of patients' hippocampi between two time points using the large deformations by diffeomorphisms framework and transport these deformations to a common template. Since the deformations are expected to be spatially structured, we perform classification combining logistic loss and spatial regularization techniques, which have not been explored so far in this context, as far as we know. The main contribution of this paper is the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev), piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent areas related to the disease progression.
机译:在阿尔茨海默氏病的背景下,两个具有挑战性的问题是:(1)特定于疾病进展的局部海马形状变化的特征;(2)识别可能转变的轻度认知障碍患者。在文献中,通常首先解决(1)以检测与疾病潜在相关的区域。然后将这些区域视为要解决的输入(2)。作为此顺序策略的替代方法,我们研究使用分类模型的逻辑回归以同时解决问题(1)和(2)。因此,患者的分类不需要对可能与疾病相关的最具代表性的海马区进行任何先验定义,因为它们会被自动检测到。我们首先使用微分形框架将大变形量量化为两个时间点之间患者海马的变形量,然后将这些变形量传输到通用模板中。由于预计变形是空间结构的,因此我们进行了结合逻辑损失和空间正则化技术的分类,据我们所知,到目前为止在这种情况下尚未对此进行探讨。本文的主要贡献是将规范化技术与不考虑空间结构的标准规范化技术进行了比较,这些规范化技术使系数图在空间上平滑(Sobolev),分段常数(总变化)或稀疏(融合LASSO)。 LASSO,山脊和ElasticNet)。在来自ADNI的103位患者的数据集上,使用空间正则化的技术可获得最佳分类率。他们还发现与疾病进展有关的连贯领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号