首页> 美国卫生研究院文献>PLoS Computational Biology >Parameter estimation for multistage clonal expansion models from cancer incidence data: A practical identifiability analysis
【2h】

Parameter estimation for multistage clonal expansion models from cancer incidence data: A practical identifiability analysis

机译:基于癌症发病率数据的多阶段克隆扩展模型的参数估计:实用的可识别性分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many cancers are understood to be the product of multiple somatic mutations or other rate-limiting events. Multistage clonal expansion (MSCE) models are a class of continuous-time Markov chain models that capture the multi-hit initiation–promotion–malignant-conversion hypothesis of carcinogenesis. These models have been used broadly to investigate the epidemiology of many cancers, assess the impact of carcinogen exposures on cancer risk, and evaluate the potential impact of cancer prevention and control strategies on cancer rates. Structural identifiability (the analysis of the maximum parametric information available for a model given perfectly measured data) of certain MSCE models has been previously investigated. However, structural identifiability is a theoretical property and does not address the limitations of real data. In this study, we use pancreatic cancer as a case study to examine the practical identifiability of the two-, three-, and four-stage clonal expansion models given age-specific cancer incidence data using a numerical profile-likelihood approach. We demonstrate that, in the case of the three- and four-stage models, several parameters that are theoretically structurally identifiable, are, in practice, unidentifiable. This result means that key parameters such as the intermediate cell mutation rates are not individually identifiable from the data and that estimation of those parameters, even if structurally identifiable, will not be stable. We also show that products of these practically unidentifiable parameters are practically identifiable, and, based on this, we propose new reparameterizations of the model hazards that resolve the parameter estimation problems. Our results highlight the importance of identifiability to the interpretation of model parameter estimates.
机译:许多癌症被认为是多种体细胞突变或其他限速事件的产物。多阶段克隆扩展(MSCE)模型是一类连续时间马尔可夫链模型,可捕获致癌作用的多发起始,促进,恶性转化假说。这些模型已被广泛用于调查许多癌症的流行病学,评估致癌物暴露对癌症风险的影响以及评估癌症预防和控制策略对癌症发生率的潜在影响。先前已经研究了某些MSCE模型的结构可识别性(对给定完美测量数据的模型可用的最大参数信息的分析)。但是,结构可识别性是一种理论特性,不能解决实际数据的局限性。在这项研究中,我们使用胰腺癌作为案例研究,以给定年龄特定的癌症发病率数据的情况下,使用数值分布似然法检查两阶段,三阶段和四阶段克隆扩展模型的实际可识别性。我们证明,在三阶段和四阶段模型的情况下,理论上在结构上可以识别的几个参数实际上是无法识别的。该结果意味着不能从数据中单独识别关键参数,例如中间细胞突变率,并且即使在结构上可识别的那些参数的估计也将不稳定。我们还表明,这些几乎无法识别的参数的乘积实际上是可识别的,并且在此基础上,我们提出了模型危害的新重新参数化方法,以解决参数估计问题。我们的结果突出了可识别性对模型参数估计值解释的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号