首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Stable myoelectric control of a hand prosthesis using non-linear incremental learning
【2h】

Stable myoelectric control of a hand prosthesis using non-linear incremental learning

机译:使用非线性增量学习对手部假体进行稳定的肌电控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stable myoelectric control of hand prostheses remains an open problem. The only successful human–machine interface is surface electromyography, typically allowing control of a few degrees of freedom. Machine learning techniques may have the potential to remove these limitations, but their performance is thus far inadequate: myoelectric signals change over time under the influence of various factors, deteriorating control performance. It is therefore necessary, in the standard approach, to regularly retrain a new model from scratch. We hereby propose a non-linear incremental learning method in which occasional updates with a modest amount of novel training data allow continual adaptation to the changes in the signals. In particular, Incremental Ridge Regression and an approximation of the Gaussian Kernel known as Random Fourier Features are combined to predict finger forces from myoelectric signals, both finger-by-finger and grouped in grasping patterns. We show that the approach is effective and practically applicable to this problem by first analyzing its performance while predicting single-finger forces. Surface electromyography and finger forces were collected from 10 intact subjects during four sessions spread over two different days; the results of the analysis show that small incremental updates are indeed effective to maintain a stable level of performance. Subsequently, we employed the same method on-line to teleoperate a humanoid robotic arm equipped with a state-of-the-art commercial prosthetic hand. The subject could reliably grasp, carry and release everyday-life objects, enforcing stable grasping irrespective of the signal changes, hand/arm movements and wrist pronation and supination.
机译:对手部假体进行稳定的肌电控制仍然是一个悬而未决的问题。唯一成功的人机界面是表面肌电图,通常可以控制几个自由度。机器学习技术可能具有消除这些限制的潜力,但是它们的性能远远不够:在各种因素的影响下,肌电信号会随时间变化,从而降低控制性能。因此,在标准方法中,有必要定期从头开始重新培训新模型。在此,我们提出了一种非线性增量学习方法,其中偶尔使用适量的新训练数据进行更新,从而可以不断适应信号的变化。特别是,结合了增量岭回归和称为随机傅立叶特征的高斯核的近似值,可以从肌电信号中预测手指的力,每个手指都手指,并且按抓握模式进行分组。我们通过首先分析其性能并预测单指力量来证明该方法是有效且实际适用于此问题的。在两个不同的天中,在四个疗程中收集了来自10名完整受试者的表面肌电图和手指力。分析结果表明,小的增量更新确实可以有效地保持稳定的性能水平。随后,我们采用了相同的在线方法来远程操作配备了最先进的商业义肢的人形机器人手臂。受试者可以可靠地抓握,携带和释放日常生活中的物体,无论信号变化,手/手臂运动以及手腕的内旋和旋后如何,都可以稳定抓握。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号