首页> 中文期刊> 《传感器与微系统》 >基于DD-CycleGAN的道路检测模型研究

基于DD-CycleGAN的道路检测模型研究

     

摘要

道路检测对于辅助驾驶而言仍具有挑战性。为了获得更准确的道路检测结果,提出一种结合深度学习与自适应检测的道路检测模型,该模型可以有效地提取道路特征并完成道路检测任务。首先,采用双判别器周期一致的生成对抗网络(DD-CycleGAN)作为全文的基础框架网络。其次,在生成器中添加空间卷积神经网络(CNN)以及残差密集块,进一步提升生成器的性能。最后,提出一种自适应的优化模型来提高道路检测的准确度。实验结果表明:提出的模型在KITTI道路基准数据集上精度达到了92.15%,明显优于传统的道路检测算法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号