首页> 中文期刊> 《传感器与微系统》 >基于CS-SNN的公交到站时间预测模型

基于CS-SNN的公交到站时间预测模型

     

摘要

针对公交到站时间预测不准以及工作日和周末运行特性差异的问题,提出了一种基于布谷鸟搜索算法的Spiking神经网络(CS-SNN)预测模型.通过分析和验证Spiking神经网络的性能特征,再采用寻优性能更强的CS算法优化Spiking神经网络的初始参数,最后利用行车历史数据对神经网络进行训练和建模来实现到站时间的准确预测,将该优化算法与未优化的SNN算法和Elman神经网络算法用MATLAB分别仿真测试.对比结果显示:无论工作日还是周末,CS-SNN预测模型对公交行程时间的预测均具有更高的准确性且结果更加稳定.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号