首页> 中文期刊> 《组合机床与自动化加工技术》 >基于EEMD和PSO-SVM的电机气隙偏心故障诊断

基于EEMD和PSO-SVM的电机气隙偏心故障诊断

     

摘要

针对电机气隙偏心故障如何通过振动信号进行有效诊断、如何选取合适故障特征等系列问题,提出了基于集合经验模态分解(EEMD)的Hilbert时频谱能量特征表达和粒子群参数优化的支持向量机(PSO-SVM)的故障诊断方法.首先对振动信号进行EEMD分解,并通过相关系数法选择有效的IMF分量;其次,对有效的IMF分量提取Hilbert时频谱能量作为特征向量;最后,利用PSO-SVM对提取的特征进行故障的识别.实验结果表明:利用该方法可以对电机偏心故障进行准确诊断.通过与其他传统故障特征在PSO-SVM下进行的比较,验证了Hilbert时频谱能量特征可以获得更高的诊断准确率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号