首页> 美国卫生研究院文献>Entropy >A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy
【2h】

A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy

机译:基于EEMD-WST信号重建和多尺度熵的滚动轴承故障诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Feature extraction is one of the challenging problems in fault diagnosis, and it has a direct bearing on the accuracy of fault diagnosis. Therefore, in this paper, a new method based on ensemble empirical mode decomposition (EEMD), wavelet semi-soft threshold (WSST) signal reconstruction, and multi-scale entropy (MSE) is proposed. First, the EEMD method is applied to decompose the vibration signal into intrinsic mode functions (IMFs), and then, the high-frequency IMFs, which contain more noise information, are screened by the Pearson correlation coefficient. Then, the WSST method is applied for denoising the high-frequency part of the signal to reconstruct the signal. Secondly, the MSE method is applied for calculating the MSE values of the reconstructed signal, to construct an eigenvector with the complexity measure. Finally, the eigenvector is input to a support vector machine (SVM) to find the fault diagnosis results. The experimental results prove that the proposed method, with a better classification performance, can better solve the problem of the effective signal and noise mixed in high-frequency signals. Based on the proposed method, the fault types can be accurately identified with an average classification accuracy of 100%.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号