首页> 中文期刊> 《组合机床与自动化加工技术》 >基于特征金字塔的多尺度金属表面缺陷检测

基于特征金字塔的多尺度金属表面缺陷检测

     

摘要

针对金属表面缺陷检测效率不高的问题,提出一种基于特征金字塔的多尺度缺陷检测方法(MSDD).首先,构建特征金字塔分类网络模型(FPCN)作为特征提取器并进行分类预训练;其次,在FPCN后连接多尺度回归层并进行微调;最后,利用非极大值抑制将MSDD输出的4165个边框进行筛选得出最终检测结果.在光度立体成像数据集上进行实验,实验结果为该算法在个别类平均精确率(AP)达98%,各类别AP均值(mAP)达90%,召回率Recall平均为88.5%,单张图片检测用时约为13 ms.这表明相比于现有多尺度算法SSD和YOLOv3,该算法对缺陷目标特征提取更加精确,同时提高了鲁棒性和检测速度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号