首页> 中文期刊> 《计算机辅助设计与图形学学报》 >融合全局与随机局部特征的鸟类姿态识别模型

融合全局与随机局部特征的鸟类姿态识别模型

     

摘要

为了高效地进行鸟类姿态分类,提出一种基于全局与随机局部特征融合的鸟类姿态识别模型.首先利用融合多分辨率的网络提取鸟类姿态全局特征;然后于网络中浅层与深层的高分辨率特征引入随机定位模块,即根据随机抽取的特征图求取最大值位置,形成包围盒裁剪原图;再将裁剪的局部图片送入子分类网络提取鸟类姿态局部特征;最后将全局和随机局部特征进行融合,并采用融合全局损失和局部损失的多损失策略进行网络调整,构建一种融合全局与随机局部特征的鸟类姿态识别模型.对CUB200-2011中存在完整单种姿态的鸟类图片进行整理汇总得到包含蹲伏、飞翔、游水和站立4种姿态的鸟类姿态数据集,基于该数据集进行实验的结果表明,所提模型的分类精度优于主流卷积神经网络框架,达到96.1%;对随机定位模块及其内部是否随机、分组情况和多损失策略等进行消融实验的结果表明,引入随机定位模块和多损失策略能够提高识别正确率,证明了随机定位模块和多损失策略的有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号