首页> 外文学位 >Computational simulations to study the kinetics of drug efflux via multidrug resistant membrane proteins expressed in confluent cell monolayers: A critical evaluation of different models employed, data fitting techniques and global optimization strategies.
【24h】

Computational simulations to study the kinetics of drug efflux via multidrug resistant membrane proteins expressed in confluent cell monolayers: A critical evaluation of different models employed, data fitting techniques and global optimization strategies.

机译:计算模拟研究通过融合细胞单层表达的多药耐药膜蛋白的药物外排动力学:不同模型,数据拟合技术和全局优化策略的关键评估。

获取原文
获取原文并翻译 | 示例

摘要

Computational models have often been employed to understand the kinetics of drug efflux via membrane proteins expressed in relevant systems. One such membrane protein extensively studied is P-glycoprotein (P-gp), a multidrug resistance protein expressed in the apical surface of epithelial cells lining several organs and tissues. Several models have been employed to understand the kinetics of drug efflux via P-gp. One such model is the minimal mass action model which is capable of determining the elementary kinetic parameters thereby providing a better understanding of the structure---function relationship of P-gp. One of the limitations of this model is that it gives a small range of possible values for each parameter, rather than a lone vector of fits. One aspect of this study is to determine the basis for the range. We find that the "range" cannot be attributed to inherent experimental error. Rather it can be attributed to the global optimization technique of the model, i.e. determining all the parameters simultaneously. The Michaelis-Menten model is also employed to study P-gp kinetics. This model allows us to determine the maximal rate of drug efflux (Vmax) and the Michaelis-Menten constant (Km). This model was originally designed for enzymes which catalyze reactions in aqueous environments. It is unclear if it is suitable to apply this model to membrane proteins such as P-gp, which directly pick substrate from the membrane. Bentz et al. (2005) using data generated by simulations employing the minimal mass action kinetic model, showed that experimentally determined Vmax values correlates reasonably well with the molecular Vmax, as determined by the elementary rate parameters. However, they found no correlation between the molecular and experimental Km values, even if the data had no error. Recently, Sun and Pang (2008), using data generated by simulations employing the steady state Michaelis-Menten model, obtained the exact opposite result. Our second objective was to compare and contrast the two computational models in their abilities to determine the kinetic parameters and to examine the possible reason for the discrepancies in correlations obtained by the same. We find that the original results of Bentz et al. (2005) hold, irrespective of the model employed. This is subjected to the fact that appropriate substrate concentrations (those capable of saturating at least 70% of P-gp present) are used. We know that P-gp is expressed in the apical membrane of epithelial cells, which are composed of microvilli. Microvilli are dynamic structures. Their expression can be altered thereby altering cellular surface area. This in turn could alter P-gp expression, besides affecting passive transport. The third aspect of my study is to understand how the changing microvilli morphology affects efflux of compounds. We discover that as long as the height of the microvilli is lesser than the distance between two adjacent microvilli, the number of molecules escaping per unit area of the membrane remains constant. If the height becomes greater than the distance between microvilli, the number of escapes per unit area falls considerably.
机译:通常使用计算模型来了解在相关系统中表达的膜蛋白的药物外排动力学。广泛研究的此类膜蛋白之一是P-糖蛋白(P-gp),P-糖蛋白是一种在多种器官和组织内衬的上皮细胞顶表面表达的多药耐药性蛋白。已经采用了几种模型来了解通过P-gp进行药物外排的动力学。一种这样的模型是最小质量作用模型,该模型能够确定基本动力学参数,从而更好地理解P-gp的结构-功能关系。该模型的局限性之一是,它为每个参数提供了较小范围的可能值,而不是拟合的孤立向量。这项研究的一个方面是确定范围的基础。我们发现“范围”不能归因于固有的实验误差。而是可以归因于模型的全局优化技术,即,同时确定所有参数。 Michaelis-Menten模型也用于研究P-gp动力学。该模型使我们能够确定药物外排的最大速率(Vmax)和米氏常数(Km)。该模型最初是为在水性环境中催化反应的酶而设计的。目前尚不清楚是否适合将此模型应用于直接从膜中提取底物的膜蛋白(例如P-gp)。本茨等。 (2005年)使用通过使用最小质量作用动力学模型的模拟生成的数据,表明通过实验确定的Vmax值与分子Vmax合理地相关,这由基本速率参数确定。但是,他们发现分子Km值和实验Km值之间没有相关性,即使数据没有错误也是如此。最近,Sun和Pang(2008)使用由稳态Michaelis-Menten模型进行的模拟生成的数据,得出了完全相反的结果。我们的第二个目标是比较和对比这两个计算模型确定动力学参数的能力,并检查它们所获得的相关性差异的可能原因。我们发现Bentz等人的原始结果。 (2005年)成立,无论采用何种模型。这受到以下事实的影响,即使用了适当的底物浓度(能够饱和至少70%的P-gp的底物浓度)。我们知道P-gp在由微绒毛组成的上皮细胞的顶膜中表达。微绒毛是动态结构。可以改变它们的表达,从而改变细胞表面积。除了影响被动转运,这反过来又可能改变P-gp的表达。我研究的第三个方面是了解微绒毛形态的变化如何影响化合物的外排。我们发现,只要微绒毛的高度小于两个相邻微绒毛之间的距离,单位面积膜上逸出的分子数就保持恒定。如果高度大于微绒毛之间的距离,则每单位面积的逃逸次数将大大下降。

著录项

  • 作者

    Agnani, Deep.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号