首页> 中文期刊> 《中南大学学报》 >Effect of inclusion on high cycle fatigue response of a powder metallurgy tool steel

Effect of inclusion on high cycle fatigue response of a powder metallurgy tool steel

         

摘要

The high cycle fatigue response of a high V-alloyed powder metallurgy tool steel (AISI 11) with different inclusion sizes was studied. Two materials of this grade at a similar hardness of about HRC 60 were subjected to axial loading fatigue tests,tensile tests and fracture toughness measurements to investigate their mechanical properties. Large inclusion above 70 μm is indicated to be responsible for the tensile fracture which happens before yielding. The fatigue strength obtained up to 107 cycles is found to decrease from approximately 1 538 MPa to 1000 MPa with the inclusion size increasing above 30 μm. The internally induced crack initiation is mainly attributed to the surface compressive residual stress of 300?450 MPa. Fractographic evaluation demonstrates that the crack initiation and propagation controlling factors of the two materials are almost the same,indicating that the two factors would be insignificantly affected by the inclusion size level. Paris sizes of the two materials both show a tendency to decrease as the ratio of stress intensity factor of crack origin to factor of fish-eye increases. The investigation into the relationship between stress intensity factors and fatigue life of the two materials further indicates that the high cycle fatigue behavior of AISI 11 is controlled by crack propagation.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号