首页> 中文期刊> 《中南大学学报》 >Determination of pile failure mechanism under pullout test in loose sand

Determination of pile failure mechanism under pullout test in loose sand

         

摘要

Estimating the deformation of soil around the pile contributes to reliable design of structures under pullout force. This work presents the results of a series of small-scale physical modelling tests designed to investigate the uplift resistance of piles with diameter of 5 cm and slenderness ratios of 1, 2, 3 and 4 in loose sand. Close photogrammetric technique and particle image velocimetry(PIV) were employed to observe the failure patterns due to uplift force on piles. The results show that the shear zones curve slightly outward near the ground surface. After peak resistance, the shear strain concentrates into a pair of narrow shear bands,then a flow around mechanism is formed accompanied by a reduction in the uplift resistance. The results from the laboratory tests were verified by analytical method proposed by Chattopadhyay and PLAXIS 2D and 3D finite element method software. It is found that the depth and width of the failure surface increase with the increment of the slenderness ratio. A good agreement is observed among the measured bearing capacity and obtained failure surface of the models and the results of numerical modelling. Finally, the maximum deformation of loose and dense sand respectively with densities of 25% and 75% were compared in the stage of fully removing pile. The results shows that the deformation of the soil is related to its density, therefore it depends on its dilatancy.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号