首页> 中文期刊> 《控制理论与应用》 >多层感知器模型互反奇异性区域学习动态的理论分析

多层感知器模型互反奇异性区域学习动态的理论分析

     

摘要

多层感知器神经网络(MLPs)的学习过程经常发生一些奇异性行为,容易陷入平坦区,这都和MLPs的参数空间中存在的奇异性区域有直接关系.当MLPs的两个隐节点的权值接近互反时,置换对称性会导致学习困难.对MLPs的互反奇异性区域附近的学习动态进行分析.本文首先得到了平均学习方程的解析表达式,然后给出了互反奇异性区域附近的理论学习轨迹,并通过数值方法得到了其附近的实际学习轨迹.通过仿真实验,分别观察了MLPs的平均学习动态,批处理学习动态和在线学习动态,并进行了比较分析.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号