首页> 中文期刊> 《计算机系统应用》 >利用学习向量化样本分类的在线学习成绩预测

利用学习向量化样本分类的在线学习成绩预测

     

摘要

对网络在线学习者产生的数据进行记录和分析,并为其提供精准化的个性化服务是在线教育发展的重要方面.本文以学习者在平台上产生的日常学习数据为样本,综合其最具代表性的五种影响因子,通过学习向量化神经网络对样本进行分类,得到基于BP神经网络的在线学习成绩预测数据.在模型中采用遗传算法有效优化BP神经网络的权重和阈值,在提高预测精度的同时加快模型的收敛速度.最后与其他两种模型进行对比分析,结果表明:该模型进行预测的结果与真实的成绩分布基本一致,具有很高的可信度,能够为有效的预测学习状态提供决策依据,具有一定的工程应用价值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号