首页> 中文期刊> 《计算机仿真》 >基于多特征的BP神经网络LSS目标识别方法

基于多特征的BP神经网络LSS目标识别方法

     

摘要

为更好地从可见光探测图像中对“低慢小”无人机目标进行识别和分类,对含有旋翼无人机、固定翼无人机和城市飞鸟这三类目标的图像进行灰度化、二值化等预处理,建立了目标圆形度、Hu不变矩、仿射不变矩特征提取模型以及多特征融合模型.在此基础上,提出了一种基于多特征的BP神经网络目标识别方法,构建包含输入层、隐含层、输出层的三层神经网络训练模型,并明确了该模型的训练过程.选取了三类目标图像,以其中每类各150张作为样本训练集,每类各50张作为样本测试集,通过计算损失函数来判定目标类别.结果 表明:上述方法的识别率达92.67%,可实现对城市空域环境的“低慢小”目标的识别.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号