首页> 中文期刊> 《计算机仿真》 >自编码器和LSTM在混合语音情感的应用

自编码器和LSTM在混合语音情感的应用

     

摘要

针对混合语音情感识别中,传统识别方法不能充分考虑语种之间的差异性,导致分类准确率偏低的问题,提出了自编码器(autoencoder)与长短时记忆(Long Short Term Memory,LSTM)模型相结合的方法,通过提取MFCC,MEL Spectrogram Frequency,Chroma三种特征获得180维特征。并利用自编码器获取一个更高维度、更深层次的500维特征,通过LSTM进行建模,提高语音情感分类的准确性。使用德语EMO-DB和中文CASIA语音库进行分类实验,研究表明,自编码器提取出的深度特征更适合混合语音情感分类。较传统分类方法,使用自编码器+LSTM进行分类,最优识别结果可提升7.5%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号