首页> 中文期刊> 《计算机系统应用》 >结合数据平衡和注意力机制的CNN+LSTM的自然语音情感识别

结合数据平衡和注意力机制的CNN+LSTM的自然语音情感识别

     

摘要

为了解决语音情感识别中数据集样本分布不平衡的问题,提出一种结合数据平衡和注意力机制的卷积神经网络(CNN)和长短时记忆单元(LSTM)的语音情感识别方法.该方法首先对语音情感数据集中的语音样本提取对数梅尔频谱图,并根据样本分布特点对进行分段处理,以便实现数据平衡处理,通过在分段的梅尔频谱数据集中微调预训练好的CNN模型,用于学习高层次的片段语音特征.随后,考虑到语音中不同片段区域在情感识别作用的差异性,将学习到的分段CNN特征输入到带有注意力机制的LSTM中,用于学习判别性特征,并结合LSTM和Softmax层从而实现语音情感的分类.在BAUM-1s和CHEAVD2.0数据集中的实验结果表明,本文提出的语音情感识别方法能有效地提高语音情感识别性能.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号