首页> 中文期刊> 《计算机工程》 >基于图对比学习的MOOC推荐方法

基于图对比学习的MOOC推荐方法

     

摘要

随着MOOC在线教育平台的飞速发展,课程和用户数量激增,学习者在面对种类繁多的课程时往往较难选择,传统的推荐方法在MOOC课程推荐中应用存在对曝光次数较低的课程推荐效果差和对噪声数据鲁棒性不足的问题。为给学习者提供高质量的推荐,提出一种图对比学习的MOOC推荐方法,同时针对二分图结构给出一种新的数据增强方法。对输入的用户项目交互的二分图随机添加或者删除边进行数据增强,得到两个子视图,使用图卷积神经网络对原始二分图和两个子视图进行节点特征提取得到用户和项目的节点表征,并构建推荐监督任务和对比学习的辅助任务进行联合优化,在此基础上将用户和项目的节点表征进行点积获得推荐结果。在MOOC数据集上进行Top-K推荐的实验结果表明,相较于LightGCN模型,该方法在Recall@5和NDCG@5上均有显著提升,最高分别提升7.8%和7.3%,能够有效提高模型对于曝光次数较低的课程的推荐准确性和对于噪声数据的鲁棒性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号