首页> 中文期刊> 《计算机应用与软件》 >基于时空双流融合网络与Attention模型的行为识别

基于时空双流融合网络与Attention模型的行为识别

     

摘要

针对长短时记忆网络(LSTM)不能充分提取视频前后关联信息导致识别精度偏低的问题,提出一种基于时空双流融合网络与Attention算法.以经典双流神经网络分别提取融合时空特征向量;构建Bi-LSTM提取时序特征;利用注意力(Attention)机制自适应地对相关性大的特征向量分配较大的权重;采用Softmax分类器对视频进行分类,实现人体行为识别.在数据集KTH上的实验结果非常出色,识别准确率可达98.4%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号