首页> 中文期刊>生态毒理学报 >淮河流域安徽段水体成组生物毒性评价

淮河流域安徽段水体成组生物毒性评价

     

摘要

Three surface water samples and twelve groundwater samples were collected in the region of Anhui sec-tion in Huaihe River Basin. The acute toxicity and genetic toxicity of these samples were analyzed, by the test of Daphnia magna acute toxicity (inhibition), micronucleus test and SOS/umu test. The results showed that for the a-cute toxicity test, the acute toxicity of surface water and most of groundwater in the area did not exceed the thresh-old of US EPA for industrial effluents toxicity (0.3 TU), the toxicity of two groundwater samples was 0.31 TU which exceeded the threshold. The acute toxicity of surface water was significantly higher than that of groundwater by t-test analysis. In SOS/umu test, the results of two surface water samples and seven groundwater samples were positive, showing DNA damage, and the induction rate of IR was between (2.20 ± 0.063) ~ (3.36 ± 0.067), but the carcinogenic risk level was between 10-6~ 10-7 . The results of micronucleus test showed that three surface water samples reached the severe pollution, and nine groundwater samples were negative. In conclusion, the acute toxicity and genetic toxicity of surface water body were relatively high, some shallow groundwater also existed some de-gree of acute toxicity and genetic toxicity, although their carcinogenic risk were in the acceptable range, still may have a potential threat to the surrounding residents’ health. However, the deep groundwater did not detect any tox-icity. The study provided the basic information on the drinking water safety and human health for the surrounding residents.%在淮河流域安徽段某区域采集了3个地表水样和12个地下水样,通过大型溞急性毒性(活动抑制)、微核及SOS/umu试验,分析了这些水样的急性毒性及遗传毒性。结果表明,急性毒性测试中,该区域地表水及大部分地下水的急性毒性均未超过US EPA废水排放毒性的控制要求(0.3 TU),有2个位点的地下水样毒性当量为0.31 TU,超过限值;经t-test分析,地表水的急性毒性显著高于地下水。 SOS/umu检测中,2个地表水样和7个地下水样的结果呈阳性,表现出DNA损伤效应,其诱导率IR在(2.20±0.063)~(3.36±0.067)之间,对应的致癌风险P基本处在10-6~10-7水平。微核检测结果表明,3个地表水样具有较严重的染色体损伤效应,9个地下水样表现为阴性。总之,该区域地表水急性毒性及遗传毒性相对较高;部分浅层地下水也存在一定程度的急性毒性和遗传毒性,致癌风险处在可接受范围,但仍可能对周围居民的健康产生潜在威胁;而深层地下水没有检测到任何毒性效应。研究为周边居民饮水安全和人体健康提供了基础信息。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号