首页> 中文期刊> 《计算机应用研究》 >一种提高神经网络泛化性能的罚项最优脑外科模型

一种提高神经网络泛化性能的罚项最优脑外科模型

     

摘要

最优脑外科过程是一种训练后网络剪枝算法,计算的复杂度非常高,通过把剪枝条件以惩罚项的形式纳入神经网络的训练目标函数中,把正则化方法的结构优化蕴涵于网络训练过程,构建面向最优脑外科过程的计算模型,实现网络训练过程和最优脑外科过程并行剪枝,既保持了最优脑外科过程的准确性,又具有正则化的高效性,提高了神经网络模型的泛化性能.该模型在理论上具有收敛性,其有效性和可行性通过给出的Levenberg-Marquardt方案仿真实验也得到了说明.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号