首页> 中文期刊> 《计算机应用研究》 >基于模糊物元模型的高维多目标FJSP研究

基于模糊物元模型的高维多目标FJSP研究

     

摘要

In order to solve high-dimensional multi-objective flexible Job-Shop scheduling problem,this paper proposed a fuzzy particle swarm optimization algorithm which was based on fuzzy matter element model and particle swarm algorithm.The proposed algorithm adopted the Euclid approach degree between the fuzzy matter element and the standard fuzzy matter element as fitness value to lead the evolution of particle swarm optimization algorithm,and introduced an external storage with constrained capacity to reserve the optimal Pareto non-dominated solutions.Besides,this paper constructed high-dimensional multi-objective flexible Job-Shop scheduling model,where makespan,total machine load,cost,maximum machine load and crudy were all concerned.The results of simulation based on Kacem benchmark problem and actual production problem show that the proposed algorithm has good convergence and can also achieve Pareto optimal solution with an ideal uniformity,it can solve high dimension multi-objective flexible Job-Shop scheduling problem effectively.%为解决高维多目标柔性作业车间调度问题,提出了一种基于模糊物元模型与粒子群算法的模糊粒子群算法(fuzzy particle swarm optimization,FPSO).该算法以模糊物元分析理论为依据,采用复合模糊物元与基准模糊物元之间的欧氏贴近度作为适应度值引导粒子群算法的进化,并引入具有容量限制的外部存储器保留较优的Pareto非支配解以供决策者选择.此外,构建了优化目标为最大完工时间、设备总负荷、加工成本、最大设备负荷与加工质量的高维多目标优化模型,并以Kacem基准问题与实际生产数据为例进行仿真模拟与对比分析.结果表明,该算法具有良好的收敛性,且搜索到的非支配解分布性较好,能够有效地应用于求解高维多目标柔性作业车间调度问题.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号