基于S1223翼型建立了平流层螺旋桨3维模型,在螺旋桨上下表面设置等离子体激励器,设计了5种螺旋桨工况下的等离子体控制方案,采用唯象学等离子体体积力模型进行数值仿真,研究了5种工况下不同等离子体控制方案对螺旋桨拉力和效率的影响。结果表明,设计工况下不宜开启等离子体激励器,采用交流激励时等离子体对高转速前进工况下的螺旋桨控制效果不明显,低速重载工况和滑翔工况下螺旋桨拉力和效率增加,低转速抗风工况下螺旋桨拉力大。采用等离子体流动控制技术提高平流层螺旋桨性能是可行的,需要进一步开展大量研究以优化等离子体激励器的布置方案和控制方案,提高等离子体控制效果,以满足低速临近空间飞行器对推进系统的需求。%Based on S1223 airfoil,a 3D stratosphere propeller model is established .Plasma actuators are set on both upper and lower propeller surfaces and five plasma control schemes for propellers are designed through numerical simulations .The results show that plasma actuator should not be turned on in design working condition .It is not effective to use AC motivation for high rotation speed forward working condi-tion.While the pull force and efficiency of propeller are raised in low speed heavy load and glide condi-tions and the propeller pull force in low rotation speed resist wind condition is larger .It is feasible to en-hance the stratosphere propeller performance by using plasma flow control technology .More researches are needed for optimizing the scheme of plasma actuators and control plans so as to meet the propulsion sys -tem requirement of low speed near space air vehicles .
展开▼